首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Two-dimensional electrophoresis together with radiolabeling experiments was used to examine cytosolic proteins of embryonic chick duodenum for responses to 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 caused a striking decrease in [3H]leucine content of an 18,000-dalton protein (approximate pI, 5.1) after a 10-min pulse with radioisotope followed by a 4-h chase. Decreased [14C]leucine content of the same protein was also observed at various times following 1,25-dihydroxyvitamin D3 addition to culture media; a significant decrease in radiolabel incorporation occurred within 30 min after addition of the hormone. The results argue that 1,25-dihydroxyvitamin D3 causes either a decreased synthesis rate or a post-translational modification of this protein. This change joins the biosynthesis of calcium-binding protein as an early event in the response of chick embryonic intestine to 1,25-dihydroxyvitamin D3.  相似文献   

3.
4.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

5.
The adenylate cyclase activation by bovine synthetic parathyroid hormone (bPTH) (1-34) was studied in vitro in kidney plasma membranes from D-deficient (D-Mb) or normal (D+Mb) rats. In D-Mb, the apparent affinity of parathyroid hormone (PTH) for membranes (170 +/- 30 nM) was significantly higher than that measured in D+Mb (55 +/- 5 nM). The maximum velocity of the PTH-stimulated adenylate cyclase was significantly higher in D+Mb than in D-Mb (163.0 +/- 13.7 and 93.4 +/- 6.7 pmol of cAMP/mg of protein/min, respectively). The action of vitamin D metabolites on the adenylate cyclase stimulation by PTH was then studied in vitro in D-Mb and D+Mb. In D-Mb, 25-hydroxyvitamin D3, 24,25-, and 1, 25-dihydroxyvitamin D3 significantly inhibited cAMP production in the presence of 0.87 microM of bPTH. Vitamin D3 had no effect. Maximal inhibition (86%) was observed for 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 decreased the maximum velocity of PTH-stimulated adenylate cyclase but did not modify the bPTH apparent affinity for D-Mb. The vitamin D3 metabolites tested did not modify the cyclase stimulation by isoproterenol, sodium fluoride, or 5'-guanylylimidodiphosphate. The presence of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 did not increase the (Na-K)-ATPase or the phosphodiesterase activities. In the presence of 1,25-dihydroxyvitamin D3 and bPTH, the apparent affinity of ATP for the catalytic moiety was not modified. The maximum velocity was decreased. These results suggest an in vitro interaction between hydroxylated vitamin D metabolites and kidney membranes PTH receptor.  相似文献   

6.
To study general stimulatory effects of 1,25-dihydroxyvitamin D3 on intestinal protein synthesis, slices of duodenal villi from 1,25-dihydroxyvitamin D3-treated and vitamin D-deficient rats were incubated in vitro for 90 min at the surface of medium containing [3H]leucine. Incorporation of the [3H]leucine into TCA-precipitated protein, which was shown to be linear for 12 h and 90% inhibited by cycloheximide, was increased by 50-60% at 26 h after a single injection of 125 ng of 1,25-dihydroxyvitamin D3 (three experiments, P less than 0.001). The increase, which was not due to circadian rhythm fluctuations of the intestine, was in synchrony with the second Ca2+ transport response observed by Halloran and DeLuca (Arch. Biochem. Biophys. 208, 477-486, 1981). However, no significant difference in [3H]leucine incorporation was observed before or during the initial Ca2+ transport response observed by Halloran and DeLuca, i.e., at 1.0, 3.0, and 6.5 h following an injection of 1,25-dihydroxyvitamin D3. The late onset of the 1,25-dihydroxyvitamin D3-induced increase in total protein synthesis implies that it is an indirect rather than a direct effect of the hormone.  相似文献   

7.
Vitamin D3 or a potent metabolite, 1,25-dihydroxycholecalciferol, induces calcium-binding protein (CaBP) synthesis and stimulates transmucosal calcium transport in embryonic chick duodena maintained in novel organ culture apparatus. When added to the sterol-free culture medium, highly purified chick intestinal CaBP, similarly and specifically, stimulates calcium transport in the cultured duodena. These results clearly demonstrate the involvement of CaBP in intestinal calcium transport.  相似文献   

8.
The hepatic uptake of the hormone 1,25-dihydroxyvitamin D3 has been studied, in vivo, using the multiple indicator dilution technique. The fractional uptake of 1,25-dihydroxyvitamin D3 during a single circulatory passage across the dog liver has been estimated at 34.4 +/- 3.3% while its hepatic clearance was estimated at 364.3 +/- 94.1 mL/min. The hepatic uptake of 1,25-dihydroxyvitamin D3 is discussed in relation to its systemic bioavailability following intravenous or oral administration as well as in relation to the hepatic uptake of other vitamin D sterols; it is postulated that the hepatic uptake of vitamin D sterols does not seem to be mediated by specific receptors on the liver plasma membrane; it seems, however, that the hepatic uptake of vitamin D sterols may be inversely related to their relative affinity for the circulating carrier, the vitamin D binding protein.  相似文献   

9.
10.
1,25-Dihydroxyvitamin D(3) has a pivotal role in bone resorption and osteoclast activity. As activated macrophages are known to synthesise 1,25-dihydroxyvitamin D(3), this study examined whether pressure modulated its synthesis. Pressure and particles have been shown to increase synthesis of pro-resorptive cytokines and other factors by cultured macrophages. Human peripheral blood macrophages were isolated, cultured and exposed to pressure (similar to that found in the human joint) and/or particles. Synthesis of 1,25-dihydroxyvitamin D(3) by macrophages was assayed using high pressure liquid chromatography and in situ hybridization. Synthesis of 1,25-dihydroxyvitamin D(3) but not 24,25-dihydroxyvitamin D(3) was increased in macrophages under pressure. In situ hybridization demonstrated an increase in 1alpha-hydroxylase expression in response to pressure or particles and simultaneous exposure to both stimuli generated higher expression of 1alpha-hydroxylase. In conclusion, this is the first study to demonstrate that mechanical loading, in the form of pressure, stimulates 1,25-dihydroxyvitamin D(3) synthesis in human macrophages. These findings have implications for the in vivo situation, as they suggest that 1,25-dihydroxyvitamin D(3) could be one factor stimulating osteoclastic bone resorption in pathologies, such as arthritis or implant loosening, where intra-articular or intra-osseous pressure is raised or where wear particles interact with macrophages.  相似文献   

11.
12.
Specific high affinity receptors for 1,25-dihydroxyvitamin D3 have been demonstrated in the human testes. The mean binding affinity (Kd +/- SD) of the receptor for 1,25-dihydroxyvitamin D3 was 1.75 +/- 0.32 x 10(-10) M but the binding capacity was low (mean Nmax +/- SD = 0.53 +/- 0.18 fmol/mg protein). Binding was time- and temperature-dependent, with a maximum binding achieved after 1 h at 25 degrees C. Although binding also took place at 4 and 37 degrees C, higher and more rapid binding was found at 25 degrees C. Furthermore, the binding between the ligand and the receptor was specific since only unlabelled 1,25-dihydroxyvitamin D3 competed with the labelled ligand. Binding of 1,25-dihydroxyvitamin D3 was abolished by trypsin and heat. Sucrose density gradient centrifugation revealed a sedimentation coefficient of 3.6S.  相似文献   

13.
14.
Concentrations of intestinal 1,25-dihydroxyvitamin D receptor were measured in rats receiving pharmacological amounts (25,000 IU/rat daily for 6 days) of either vitamin D2 or vitamin D3. The data showed that both hypervitaminosis D2 and hypervitaminosis D3 resulted in significant up-regulation of intestinal 1,25-dihydroxyvitamin D receptor (fmol/mg protein) relative to controls (409 +/- 24, vitamin D2-treated; 525 +/- 41, vitamin D3-treated; and 249 +/- 19, control). The 1,25-dihydroxyvitamin D receptor enhancement also was accompanied by elevated plasma 25-hydroxyvitamin D and hypercalcemia. These data suggest that increased target-tissue 1,25-dihydroxyvitamin D receptor may play a role in enhancing target-tissue responsiveness and, thus, have a significant role in mediating the toxic effects of hypervitaminosis D.  相似文献   

15.
A stimulative effect of 1,25-dihydroxyvitamin D3 was tested on osteoblastic cells, clone MC3T3-E1, cultured in serum-free medium with 0.1% bovine serum albumin. This steroid increased alkaline phosphatase activity in a dose-related fashion. The steroid also stimulated dose-dependently collagen and non-collagen protein syntheses, their maximal effects being observed at 12 and 24 h, respectively. The incorporation of [3H]-proline into collagen or non-collagen protein in cells exposed to this steroid for 12 h was 2.9 or 1.9-fold over that of control cultures, respectively. These results strongly indicate the stimulative effects of 1,25-dihydroxyvitamin D3 on the differentiation of osteoblasts in vitro.  相似文献   

16.
Biphasic effects of 1,25-dihydroxyvitamin D-3 on DNA synthesis were shown in primary cultured (24 h) chick embryo myoblasts exposed to physiological concentrations of the hormone. The sterol stimulated [3H]thymidine incorporation into DNA in proliferating myoblasts, e.g., at early stages of culture prior to cell fusion or in high serum-treated cells. The opposite effects were observed during the subsequent stage of myoblast differentiation in low-serum media. The mitogenic effect of 1,25-dihydroxyvitamin D-3 was correlated with an increase in c-myc mRNA and a decrease in c-fos mRNA levels, whereas its inhibitory action on DNA synthesis was accompanied by increased myofibrillar and microsomal protein synthesis and an elevation of creatine kinase activity, the latter suggesting a stimulation of muscle cell differentiation by the sterol. These data are in agreement with the results of previous morphological studies. Treatment of myoblasts with the calcium ionophore X-537 A or the phorbol ester TPA caused only a transient stimulation of [3H]thymidine incorporation into DNA, which occurred earlier than the response elicited by 1,25-dihydroxyvitamin D-3, suggesting that changes in intracellular Ca2+ and kinase C activity are not major mediators of the hormone effects. A similar temporal profile of changes in calmodulin mRNA levels as that of [3H]thymidine incorporation into DNA was observed after treatment of myoblasts with the sterol, in accordance with the role of calmodulin in the regulation of cell proliferation. 1,25-dihydroxyvitamin D-3 may play a function in embryonic muscle growth and differentiation.  相似文献   

17.
The specific binding of radiolabeled 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to intact rat osteosarcoma (ROS 17/2) cells was followed for 24 h. In the presence of 0.5-1.5 nM 1,25(OH)2D3, hormone binding increased over a period of 12 h, from 1.1 X 10(4) to 1.3 X 10(5) receptors/cell. The elevated level of hormone binding persisted through 24 h provided that the initial concentration of hormone was maintained. The concentration dependence of this increase in receptor level was centered between 10 and 30 pM 1,25(OH)2D3, and the binding at 12 h exhibited the metabolite specificity expected for a 1,25(OH)2D3 receptor. The t 1/2 values for the disappearance of unoccupied and occupied receptors were roughly the same, approximately 2.7 h; therefore, the increase in hormone binding was not due to receptor stabilization. In comparison, hormone-receptor complexes appeared to dissociate with a t 1/2 of 1 h. alpha-Amanitin treatment reduced the magnitude of receptor accumulation by 50-60%, indicating that mRNA synthesis was required to achieve the maximal response. Ligand-dependent regulation of cellular receptor levels provides a mechanism for amplifying the primary hormonal signal and is predicted to influence the kinetics, magnitude, and dose dependence of cellular responses.  相似文献   

18.
The synthesis of osteocalcin, the major non-collagenous protein of adult bone, was examined in cultures of 21-day fetal rat calvariae. Osteocalcin was measured by a sensitive and specific radioimmunoassay. Osteocalcin concentration in unincubated calvariae was 14.5 +/- 0.5 ng/calvaria. After incubation, there was a continuous increase in bone and medium osteocalcin, and by 96 h the values were about 100% higher than in unincubated calvariae. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) at 10(-11) to 10(-8)M increased osteocalcin synthesis. The effect appeared as early as 6 h after treatment and was primarily observed in the culture medium, and 1,25-(OH)2D3 stimulated osteocalcin up to 9-fold by 96 h. Concomitant with the effect on osteocalcin synthesis, 1,25-(OH)2D3 inhibited collagen synthesis. Cycloheximide markedly decreased osteocalcin concentrations in control and 1,25-(OH)2D3-treated calvariae. The stimulatory effect on osteocalcin synthesis was specific to 1,25-(OH)2D3 since 24,25-dihydroxyvitamin D3, parathyroid hormone, epidermal growth factor, and prostaglandin E2 did not stimulate osteocalcin synthesis, and parathyroid hormone and epidermal growth factor opposed the 1,25-(OH)2D3 stimulatory effect. Insulin did not alter osteocalcin concentration by itself but enhanced the effect of 1,25-(OH)2D3. In conclusion, 1,25-(OH)2D3 stimulates osteocalcin synthesis in cultures of normal calvariae, but this effect is not shared by other hormones known to affect bone metabolism.  相似文献   

19.
The effect of 1,25-dihydroxyvitamin D3 on adenylate cyclase responsiveness was studied in the clonal osteogenic sarcoma cell line, UMR 106-06, which responds to several bone active hormones. 1,25-dihydroxyvitamin D3 treatment had no consistent effect on basal formation of cyclic AMP in intact cells, but the responses to parathyroid hormone, isoproterenol, prostaglandin E2, salmon calcitonin and the plant diterpene, forskolin, were all attenuated, by up to 90%. The effect of 1,25-dihydroxyvitamin D3 was dose-dependent, with half-maximal effectiveness at 0.1 nM, and required 48 h treatment of cells before it became apparent. The relative potencies of other vitamin D3 compounds correlated closely with their relative affinities for the 1,25-dihydroxyvitamin D3 receptor and their biological activities in other systems. 1,25-dihydroxyvitamin D3 treatment had no effect on the kinetics of labelled calcitonin binding to UMR 106-06 cells. Furthermore, the fact that such a range of hormones was affected made a receptor mediated mechanism unlikely. Nucleotide stimulatory (Ns) unit activity was assayed after 1,25-dihydroxyvitamin D3 treatment and found to be unchanged. Islet activating protein, an inhibitor of nucleotide inhibitory unit (Ni) activity, failed to modify the 1,25-dihydroxyvitamin D3 effect. Thus the effect of 1,25-dihydroxyvitamin D3 appeared to be exerted beyond hormone receptor and nucleotide regulatory components of the adenylate cyclase complex. It is concluded that 1,25-dihydroxyvitamin D3 attenuates adenylate cyclase response to hormones by a direct or indirect action on the catalytic component of adenylate cyclase.  相似文献   

20.
1,25-Dihydroxyvitamin D3 intestinal receptor replenishment was examined in rachitic chickens after hormone administration. A single injection of 1,25-dihydroxyvitamin D3 caused an increase in the level of occupied receptors with a concomitant decrease in the amount of unoccupied receptors. Maximum occupancy occurred 1 h after hormone injection. The metabolic inhibitor of protein synthesis, cycloheximide, was employed to obtain additional information concerning the fate of 1,25-dihydroxyvitamin D3 receptor complexes. Cycloheximide, at a dose that effectively blocked protein synthesis, had no effect on the time-course or the magnitude of replenishment of nuclear receptors. Additionally, repletion with vitamin D3 or administration of several injections of 1,25-dihydroxyvitamin D3 did not lead to a lag in replenishment time or a significant decrease in total receptor levels. These findings demonstrate that recycling of receptors plays an important functional role for the replenishment of unoccupied 1,25-dihydroxyvitamin D3 intestinal receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号