首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intratumoral metabolism and synthesis of biologically active steroids such as estradiol and 5-dihydrotestosterone as a result of interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone-dependent breast carcinoma. Among these enzymes involved in estrogen metabolism, intratumoral aromatase play an important role in converting androgens to estrogens in situ from serum and serving as the source of estrogens, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS), and estrogen sulfotransferase, which contribute to in situ availability of biologically active estrogens, also play pivotal roles in this intratumoral estrogen production above. Androgen action on human breast carcinoma has not been well-studied but are considered important not only in hormonal regulation but also other biological features of carcinoma cells. Intracrine mechanisms also play important roles in androgen actions on human breast carcinoma cells. Among the enzymes involved in biologically active androgen metabolism and/or synthesis, both 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; conversion from circulating androstenedione to testosterone) and 5-reductase (5Red; reduction of testosterone to DHT (5-dihydrotestosterone) were expressed in breast carcinoma tissues, and in situ production of DHT has been proposed in human breast cancer tissues. However, intracrine mechanisms of androgens as well as their biological or clinical significance in the patients with breast cancer have not been fully elucidated in contrast to those in estrogens.  相似文献   

2.
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.  相似文献   

3.
Androgens influence the development and growth of the mammary gland in women. Treatment of animals and cultured cells with androgens has either inhibitory or stimulatory effects on the proliferation of mammary epithelia and cancer cells; the mechanisms for these dual functions are still not very clear and are discussed in this review. Epidemiological data suggest that, similar to increased estrogens, elevated androgens in serum may be associated with the development of breast cancer. Experiments in rodents have also shown that simultaneous treatment of androgen and estrogen synergizes for mammary gland carcinogenesis. Similar synergistic effects of both hormones have been observed for carcinogenesis of the uterine myometrium of female animals and for carcinogenesis of the prostate and deferens of males. There are also clinical and experimental indications for a possible association of elevated levels of both androgens and estrogens with the development of ovarian and endometrial cancers. A hypothesis is thus proposed that concomitant elevation in both androgens and estrogens may confer a greater risk for tumorigenesis of the mammary gland, and probably other female reproductive tissues than an elevation of each hormone alone.  相似文献   

4.
Because activated estrogen (ER) and androgen (AR) receptors stimulate cell proliferation in breast and prostate cancer, inhibiting their actions represents a major therapeutic goal. Most efforts to modulate ER and AR activity have focused on inhibiting the synthesis of estrogens or androgens or on the identification of small molecules that act by competing with agonist hormones for binding in the ligand-binding pocket of the receptor. An alternative approach is to implement screens for small molecule inhibitors that target other sites in the pathway of steroid receptor action. Many of these second-site inhibitors directly target ER or AR; others have still unknown sites of action. Small molecule inhibitors that target second sites represent new leads with clinical potential; they serve as novel modulators of receptor action; and they can reveal new and as yet unidentified interactions and pathways that modulate ER and AR action.  相似文献   

5.
Sexual hormones, estrogens and androgens, determine biological response in a tissue- and gender-specific manner and have a pivotal role in endocrine-mediated tumorigenesis. In situ estrogen production by aromatase is a critical determinant for breast cancer growth and progression. On the contrary, clinical and in vitro studies indicate that androgens have a protective role in mammary carcinogenesis. Here, we demonstrated, in hormone-dependent breast cancer cells, the existence of a functional interplay between the androgen receptor (AR), the orphan nuclear receptor DAX-1 and the aromatase enzyme involved in the inhibition of the estrogen-dependent breast cancer cell proliferation exerted by androgen signaling. Indeed, our results revealed, in MCF-7 cells, that ligand-activated AR induces the expression of the orphan nuclear receptor DAX-1 by direct binding to a newly identified androgen-response-element within the DAX-1 proximal promoter. In turn, androgen-induced DAX-1 is recruited, in association with the corepressor N-CoR, within the SF-1/LRH-1 containing region of the aromatase promoter, thereby repressing aromatase expression and activity. In elucidating a novel mechanism by which androgens, through DAX-1, inhibit aromatase expression in breast cancer cell lines, these findings reinforce the theory of androgen- opposing estrogen-action, opening new avenues for therapeutic intervention in estrogen-dependent breast tumors.  相似文献   

6.
It has been previously shown that estrogens may exert their action on human breast cancer cells through coordinated control of secreted growth factors which act in an autocrine and paracrine fashion. Growth stimulation of the androgen receptor negative prostate carcinoma cell line DU-145 by dihydrotestosterone in the presence of the androgen-responsive human prostate carcinoma cell line LNCaP now indicates that androgens may regulate growth of prostate carcinoma cells through related mechanisms. A variety of androgen-regulated growth modulatory activities with autocrine and paracrine potential can be detected in conditioned media from LNCaP cells partially purified by ion exchange chromatography. Androgen-induced growth of LNCaP cells is partially inhibited by the polyanions suramin and dextran sulfates which antagonize growth factor action. These data suggest the existence of at least two different mechanisms of growth regulation by androgen which can be distinguished by their different sensitivity to growth factor inhibitory agents. We conclude that the combination of antipeptidergic substances and androgen withdrawal would represent a new and promising strategy for treatment of human prostate cancer.  相似文献   

7.
The antiproliferative effect of antiestrogens in breast cancer is believed to be entirely due to the inhibition of estrogen induced growth. We show here that non-steroidal antiestrogens inhibit the growth of the human breast cancer MCF7 cells in the complete absence of estrogens (phenol-red-free medium) when cell proliferation is stimulated by insulin or epidermal growth factor. This non-antiestrogenic effect of antiestrogens is, however, mediated by accessible estrogen receptor sites, as it is not observed in receptor negative hormone-independent breast cancers, and is rescued by estradiol but not by insulin. We conclude that antiestrogens inhibit cell proliferation by inhibiting growth factor action as well as estrogen action and that in both cases, accessible estrogen receptors are required.  相似文献   

8.
Prostate cancer is the commonest non-skin cancer in men. Incidence and mortality rates of this tumor vary strikingly throughout the world. Although several factors have been implicated to explain this remarkable variation, lifestyle and dietary factors may play a dominant role, with sex hormones behaving as intermediaries between exogenous factors and molecular targets in development and progression of prostate cancer. Human prostate cancer is generally considered a paradigm of androgen-dependent tumor; however, estrogen role in both normal and malignant prostate appears to be equally important. The association between plasma androgens and prostate cancer remains contradictory and mostly not compatible with the androgen hypothesis. Similar evidence apply to estrogens, although the ratio of androgen to estrogen in plasma declines with age. Apart from methodological problems, a major issue is to what extent circulating hormones can be considered representative of their intraprostatic levels. Both nontumoral and malignant human prostate tissues and cells are endowed with key enzymes of steroid metabolism, including 17betahydroxysteroid dehydrogenase (17betaHSD), 5beta-reductase, 3alpha/3betaHSD, and aromatase. A divergent expression and/or activity of these enzymes may eventually lead to a differential prostate accumulation of steroid derivatives having distinct biological activities, as it occurs for hydroxylated estrogens in the human breast. Locally produced or metabolically transformed estrogens may differently affect proliferative activity of prostate cancer cells. Aberrant aromatase expression and activity has been reported in prostate tumor tissues and cells, implying that androgen aromatization to estrogens may play a role in prostate carcinogenesis or tumor progression. Interestingly, many genes encoding for steroid enzymes are polymorphic, although only a few studies have supported their relation with risk of prostate cancer. In animal model systems estrogens, combined with androgens, appear to be required for the malignant transformation of prostate epithelial cells. Although the mechanisms underlying the hormonal induction of prostate cancer in experimental animals remain uncertain, there is however evidence to support the assumption that long term administration of androgens and estrogens results in an estrogenic milieu in rat prostates and in the ensuing development of dysplasia and cancer. Both androgen and estrogen have been reported to stimulate proliferation of cultured prostate cancer cells, primarily through receptor-mediated effects. As for estrogens, the two major receptor types, ERalpha and ERbeta, are expressed in both normal and diseased human prostate, though with a different cellular localization. Since these two receptors are different in terms of ligand binding, heterodimerization, transactivation, and estrogen response element activity, it is likely that an imbalance of their expression may be critical to determine the ultimate estrogen effects on prostate cancer cells. In prostate cancer, ERbeta activation appears to limit cell proliferation directly or through ERalpha inhibition, and loss of ERbeta has been consistently associated with tumor progression. Several splicing variants of both ERalpha and ERbeta exist. Little is known about their expression and function in the human prostate, although reciprocal regulation and interaction with gene promoter both warrant further investigation. In summary, although multiple consistent evidence suggests that estrogens are critical players in human prostate cancer, their role has been only recently reconsidered, being eclipsed for years by an androgen-dominated interest.  相似文献   

9.
17β-Hydroxysteroid dehydrogenases (17HSDs) catalyze the interconversions between active 17β-hydroxysteroids and less-active 17-ketosteroids thereby affecting the availability of biologically active estrogens and androgens in a variety of tissues. The enzymes have different enzymatic properties and characteristic cell-specific expression patterns, suggesting differential physiological functions for the enzymes. Epidemiological and endocrine evidence indicate that estrogens play a key role in the etiology of breast cancer while androgens are involved in mechanisms controlling the growth of prostatic cells, both normal and malignant. Recently, we have developed, using LNCaP prostate cancer cell lines, a cell model to study the progression of prostate cancer. In the model LNCaP cells are transformed in culture condition to more aggressive cells, able to grow in suspension cultures. Our results suggest that substantial changes in androgen and estrogen metabolism occur in the cells during the process. These changes lead to increased production of active estrogens during transformation of the cells. Data from studies of breast cell lines and tissues suggest that the oxidative 17HSD type 2 may predominate in human non-malignant breast epithelial cells, while the reductive 17HSD type 1 activity prevails in malignant cells. Deprivation of an estrogen response by using specific 17HSD type 1 inhibitors is a tempting approach to treat estrogen-dependent breast cancer. Our recent studies demonstrate that in addition to sex hormone target tissues, estrogens may be important in the development of cancer in some other tissues previously not considered as estrogen target tissues such as colon. Our data show that the abundant expression of 17HSD type 2 present in normal colonic mucosa is significantly decreased during colon cancer development.  相似文献   

10.
While agents targeting estrogen receptors are most effective in adjuvant therapy for human breast cancers expressing estrogen receptors after surgery, breast cancers lacking estrogen receptor are clinically serious, because they are highly malignant and exhibit resistance to the usual anti-cancer drugs, including estrogen receptor-antagonists and DNA breaking agents. Here, we found that MX-1, a human breast cancer cell line lacking estrogen receptors, exhibited higher AP-1 activity and expressed higher levels of c-Jun, c-Fos, and Fra-1 when compared with conventional estrogen receptor-positive human breast cancer cell lines. The prenylphenol antibiotic ascochlorin suppressed the AP-1 activity of MX-1 cells, and selectively killed MX-1 cells, partly due to induction of apoptosis. Our results suggest that AP-1 is an effective clinical target molecule for the treatment of estrogen receptor-negative human breast cancer.  相似文献   

11.
Accumulating evidence indicate that structural synaptic plasticity in limbic areas plays a vital role not only in normal brain functions, such as cognition and mood, but also in the development of neurological and mental disorders. We have learned from studies investigating neuronal remodeling that estrogens have an exceptional synaptogenic potential that seems to be specific to limbic areas of the adult female brain. On the other hand, structural synaptic plasticity in the adult male brain and the synaptogenic effect of androgens received relatively little attention. During the last five years, the Leranth laboratory provided conclusive evidence that the hippocampus and prefrontal cortex of adult male rodents and non-human primates retain considerable structural synaptic plasticity similar to the female, and that androgens are capable of inducing spine synapse growth in both the hippocampus and prefrontal cortex similar to estrogens. Our recent work also demonstrates that androgen-induced remodeling of spine synapses in the prefrontal cortex of adult male rats is dependent, at least to some extent, on functional androgen receptors, while being entirely independent of the androgen receptor in the hippocampus. Based on these findings and on their many beneficial effects, we believe that androgens hold a great and undeservingly neglected therapeutic potential that could be employed to reverse synaptic pathology in various neurocognitive and neuropsychiatric disorders.  相似文献   

12.
This review provides a summary of the normal biology, development, and morphology of the breast in nonhuman primates (macaques), and of the major published work addressing hormonally-induced changes in the breast of these animals. The mammary glands of macaques are anatomically, developmentally, and physiologically similar to the human breast, with similar expression of sex steroid receptors (estrogen receptors alpha and beta, progesterone receptor A and B, androgen receptors), estrogen dependent markers, and steroid metabolizing enzymes. Genetic similarity between human beings and macaques is high, varying from 95-99% depending on the sequence evaluated. Macaques develop hyperplastic and cancerous lesions of the breast spontaneously, which are similar in type and prevalence to those of human beings. They have a reproductive physiology typical of anthropoid primates, including a distinct menarche and menopause, and a 28-day menstrual cycle. These similarities give unique value to the macaque model for evaluation of the effectiveness and safety of hormonal agents. Such agents considered in this review include estrogens and progestogens, combined therapies such as oral contraceptives and post-menopausal hormone therapies, androgens, selective estrogen receptor modulators, phytoestrogens, prolactin, somatotropin, epidermal growth factor, and other novel agents with hormonal or growth factor-like activity. This review also includes a consideration of selected background changes and typical strategies and markers used for evaluation of experimentally-induced changes, including biopsy-based strategies designed to control for inter-individual variability and minimize numbers of animals used.  相似文献   

13.
The growth and function of the prostate is dependent on androgens. The two predominant androgens are testosterone, which is formed in the testis from androstenedione and 5alpha-dihydrotestosterone, which is formed from testosterone by 5alpha-reductases and is the most active androgen in the prostate. Prostate cancer is one of the most common cancers among men and androgens are involved in controlling the growth of androgen-sensitive malignant prostatic cells. The endocrine therapy used to treat prostate cancer aims to eliminate androgenic activity from the prostatic tissue. Most prostate cancers are initially responsive to androgen withdrawal but become later refractory to the therapy and begin to grow androgen-independently. Using LNCaP prostate cancer cell line we have developed a cell model to study the progression of prostate cancer. In the model androgen-sensitive LNCaP cells are transformed in culture conditions into more aggressive, androgen-independent cells. The model was used to study androgen and estrogen metabolism during the transformation process. Our results indicate that substantial changes in androgen and estrogen metabolism occur in the cells during the process. A remarkable decrease in the oxidative 17beta-hydroxysteroid dehydrogenase activity was seen whereas the reductive activity seemed to increase. The changes suggest that during transformation estrogen influence is increasing in the cells. This is supported by the cDNA microarray screening results which showed over-expression of several genes up-regulated by estrogens in the LNCaP cells line representing progressive prostate cancer. Since local steroid metabolism controls the bioavailability of active steroid hormones in the prostate, the variations in steroid-metabolizing enzymes during cancer progression may be crucial in the regulation of the growth and function of the organ.  相似文献   

14.
Breast cancer is a hormone-based disease with numerous factors contributing to the lifetime risk of developing the disease. While breast cancer risk is reduced by nearly 50% after one full term pregnancy, women over the age of 25 have a significantly greater risk of developing breast cancer immediately following parturition compared to their nulliparous counterparts. It is widely presumed that the increased risk of developing breast cancer following pregnancy is due to the ability of pregnancy-associated hormones to promote the further proliferation of an initiated target cell population. It is surprising however, that the majority of breast cancers that develop following pregnancy lack appreciable expression of either the estrogen or progesterone receptors. This important observation suggests that if hormones play a part in promoting breast cancer following pregnancy, they may not be doing so through direct binding to hormone receptor molecules expressed by breast cancer cells.

To reconcile this conceptual conflict we investigated the hypothesis that steroid hormones promote the outgrowth of ER-negative cancers by influencing host cell types distinct from the breast epithelium itself. We demonstrated that increasing the levels of circulating estrogens is sufficient to promote the formation and progression of ER-negative cancers while, pharmacologically inhibiting estrogen synthesis following pregnancy prevents ER-negative tumor formation. Moreover, we demonstrate that the effects of estrogen act via a systemic increase in host angiogenesis, in part through increased mobilization and recruitment of bone marrow stromal derived cells into sites of angiogenesis and to a growing tumor mass. Taken together, these data suggest that estrogen may promote the growth of ER-negative cancers by acting on cells distinct from the cancer cells to stimulate angiogenesis.  相似文献   


15.
Aromatase and cyclooxygenases: enzymes in breast cancer   总被引:8,自引:0,他引:8  
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE2 increases intracellular cAMP levels and stimulates estrogen biosynthesis, and previous studies in our laboratories have shown a strong linear association between aromatase (CYP19) expression and expression of the cyclooxygenases (COX-1 and COX-2) in breast cancer specimens. To further investigate the pathways regulating COX and CYP19 gene expression, studies were performed in normal breast stromal cells, in breast cancer cells from patients, and in breast cancer cell lines using selective pharmacological agents. Enhanced COX enzyme levels results in increased production of prostaglandins, such as PGE2. This prostaglandin increased aromatase activity in breast stromal cells, and studies with selective agonists and antagonists showed that this regulation of signaling pathways occurs through the EP1 and EP2 receptor subtypes. COX-2 gene expression was enhanced in breast cancer cell lines by ligands for the various peroxisome proliferator-activated receptors (PPARs), and differential regulation was observed between hormone-dependent and -independent breast cancer cells. Thus, the regulation of both enzymes in breast cancer involves complex paracrine interactions, resulting in significant consequences on the pathogenesis of breast cancer.  相似文献   

16.
Focus here is on the mechanism of action of both estrogens and antiestrogens at the tumor cell levels in breast cancer. The interactions of estrogens and their antagonists are emphasized and analyzed in terms of current and potential clinical applications to breast cancer treatment. This review deals with these interrelationships at the molecular levels, not just with general aspects of endocrine interrelationships. The article is divided into 8 main parts: 1) an introduction, which reviews historical understanding of receptor technology and significances; 2) main properties of estrogens and estrogen receptors; 3) the influence of estrogens and antiestrogens on growth of experimental mammary tumor systems; 4) the suppression of or administration of estrogens for treatment of advanced human breast cancer; 5) estrogen receptivity of mammary tumors; 6) progress in treatment of advanced breast cancer derived from studies on the mode of action of estrogens; 7) the prognostic significance of estrogens and estrogenic receptivity (the estriol theory); and 8) concluding remarks on the future paths of receptor research.  相似文献   

17.
18.
Many sex differences in the regulation of reproductive functionin rats are the result of a differentiation of the brain whichoccurs neonatally. Although injections of either androgens orestrogens are capable during the neonatal period of alteringhypothalamic systems involved in reproductive behavior and gonadotropinregulation, the physiological role of each type of hormone hasnot been clearly established. In both sexes, circulating estrogensare normally kept from interacting with estrogen receptors inthe limbic brain by the high levels of alpha-fetoprotein inthe blood. The local aromatization of androgens in the braincould circumvent alpha-fetoprotein, since androgens do not bindto this serum protein. The "paromatization hypothesis" statesthat testosterone, which is abundant in neonatal male circulationbut absent in females, is locally converted to estradiol inthe limbic brain. There it binds to estrogen receptor proteinsto produce tissue differentiation. The ontogeny of estradiolbinding proteins in limbic areas is consistent with the aromatizationhypothesis, with a rapid increase in receptor levels occurringshortly after birth. Also, the presence of endogenous estradiol-receptorcomplexes has been demonstrated in the cell nuclei of male neonatesbut not female neonales. Furthermore, the presence of estradiolbinding proteins in other regions of the neonatal male and femalebrain suggests an additional role of estradiol. unknown as ofyet. Several studies with agents which block the aromatizationof androgens to estrogens or the binding of estrogens to theirreceptors are consistent with the aromatization hypothesis,since these agents prevent the differentiation of intact neonatalmales. However, specific androgen binding proteins are alsopresent in neonatal brains, and androgen-receptor complexescan be found in cell nuclei of neonates after an injection oftritiated androgen. The possible involvement of these receptorsin sexual differentiation of the brain is suggested by the findingthat an antiandrogen inhibits both the binding of androgens(but not estrogens) and the differentiation of males.  相似文献   

19.
In this overview of results from our laboratory, we address the question of the role of estrogens during early steps of metastasis, involving cell invasion through the basement membrane and cell motility. The motility of several estrogen receptor (ER) positive breast (MCF7, T47D) and ovarian (BG-1, SKOV3, PEO4) cancer cell lines was studied using a modified Boyden chamber assay. We observed, in all cases, estradiol induced inhibition of cancer cell invasion and motility. A similar inhibitory effect of estradiol was found when the wild-type ER was stably transfected in the ER-negative MDA-MB231 cells and 3Y1-Ad12 cancer cells. The mechanism of this inhibitory effect is unknown. In ovarian cancer, however, it may involve intermediary proteins such as fibulin-1, an extracellular matrix protein that strongly interacts with fibronectin and which is induced by estrogen and secreted by ovarian cancer cells. We conclude that estrogens in ER-positive breast and ovarian cancers have a dual effect, since they stimulate tumor growth but inhibit invasion and motility. This may be consistent with the good initial prognostic value of ER-positive breast cancers compared to ER negative breast cancers noted in several clinical studies.  相似文献   

20.
Estrogen stimulates the proliferation of estrogen receptor (ER)-positive breast cancer cells. Aromatase is the enzyme responsible for the conversion of androgens into estrogens, and synthetic aromatase inhibitors such as letrozole, anastrozole, and exemestane have proven to be effective endocrine regimens for ER-positive breast cancer. In a recent study, we have found that 4-benzyl-3-(4'-chlorophenyl)-7-methoxycoumarin is a potent competitive inhibitor of aromatase with respect to the androgen substrate. Its K(i) value was determined to be 84 nm, significantly more potent than several known aromatase inhibitors. The specific interaction of this compound with aromatase was further demonstrated by the reduction of its binding by several mutations at the active site region of aromatase and evaluated by computer modeling analysis. The structure-activity studies have revealed that three functional groups (i.e. 3-(4'-chlorophenyl), 4-benzyl, and 7-methoxyl) of this coumarin are important in its inhibition of aromatase. In addition, through a matrigel thread three-dimensional cell culture, this compound was shown to behave like known aromatase inhibitors that suppress the proliferation of aromatase and estrogen receptor positive MCF-7aro breast cancer cells. This coumarin has been shown not to be cytotoxic at up to 40 mum. It was found not to be an inhibitor of steroid 5alpha-reductase that also utilizes androgen as the substrate and not to be a ligand of ERalpha, ERbeta, estrogen-related receptors, or androgen receptor. These results demonstrate that coumarins (a common type of phytochemical) or their derivatives can be potent inhibitors of aromatase and may be useful in suppressing aromataseand ER-positive breast tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号