首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Role of outer coat in resistance of Bacillus megaterium spore   总被引:2,自引:0,他引:2  
The outer coat fraction (OC-Fr) of Bacillus megaterium ATCC 12872 spore was isolated as a resistant residue after alkali extraction, sonic treatment, and pronase digestion of the spore coat preparation, and its backbone structure was determined by chemical analysis to be composed of galactosamine-6-phosphate (GalN-P) polymers with polypeptides and calcium. OC-Fr was not fully solubilized after ordinary acid hydrolysis. OC-Fr was insensitive to all hexosaminidases tested, and moreover, an isolated fragment, a pentamer of GalN-P, was also resistant to lysozyme and hexosaminidases even after N-acetylation, being sensitive to them to some extent after dephosphorylation. Molecular sieving experiments revealed that the outer coat limited the entry of compounds with a molecular weight of more than 2,000. Exchange of the metal on the spore surface also influenced the heat resistance. Spores of OC-Fr-deficient mutants were less resistant but were still much more resistant than the vegetative cells. These results suggest that the outer coat protects the contents of the spore against chemical, physical and enzymatic treatments owing to the chemical structure itself, composed mainly of GalN-P polymers, and the molecular sieving effect.  相似文献   

2.
It was proved that three spore coat proteins of 48, 36, and 22 kDa (P48, P36, and P22) were the components of the outermost layer (OL) of Bacillus megaterium ATCC 12872 spore by analysis of the isolated OL. And it was indicated that these proteins were deposited not by disulfide bond, but by ionic and/or hydrophobic bonds on the spore. Among them, P36 and P22 were expected to be located on the very surface of the spore by immunological analysis. In the OL deficient mutant of B. megaterium ATCC 12872, MAE05, whose spore was lacking in these OL proteins and galactosamine-6-phosphate polymer, both P36 and P22 were present in the mother cell cytoplasm and deposited on the forespores, but they disappeared with the lysis of mother cells. An OL protein-releasing factor having proteolytic activity was detected in the culture supernatant at the late sporulating stage of both the wild-type and the mutant strains. But the factor could not act on the proteins of the mature spores and the forespores at t10 (tn indicates n hr after the end of exponential growth) of the wild-type strain. Moreover, P36 and P22 were found in the spores of a revertant of MAE05 which could form galactosamine-6-phosphate polymer, suggesting that this sugar polymer played the role in protecting the OL proteins against the protease-like substance after the deposition.  相似文献   

3.
To determine the regulation of morphogenesis of the outermost layer, the thick layer outside the inner coat, of the Bacillus megaterium spore, we isolated 15 outermost layer deficient mutants of B. megaterium using transposon Tn917. Three mutant strains lacked both synthesis of the 48-kDa outermost layer protein and induction of two initial enzymes for galactosamine-6-phosphate polymer synthesis, evidence that these biochemical events are regulated in the cascade system during morphogenesis of the outermost layer.  相似文献   

4.
Two glucosamine (GCA)-requiring mutants have been isolated which grow on glucose minimal or nutrient sporulation medium only in the presence of either GCA or acetyl-GCA. They lack the l-glutamine-d-fructose-6-phosphate aminotransferase (EC 2.6.1.13), which is repressible by GCA and whose activity in the standard strain decreases after cessation of growth. But the mutants can grow on GCA as sole carbon and ammonia source, because GCA induces the synthesis of 2-amino-2-deoxy-d-glucose-6-phosphate ketol-isomerase (deaminating) (EC 5.3.1.10). With respect to sporulation, the GCA-requiring mutants are in a serious dilemma, as GCA represses the onset of massive sporulation and yet a small amount of GCA-6-phosphate derivatives is necessary to allow sporulation. When GCA is continuously provided in small quantities, sporelike particles are produced which contain little or no spore cortex but a normal spore coat. Apparently, GCA derivatives are needed especially for cortex formation. Many of the sporelike particles can produce colonies after octanol, but not after heat treatment. When they are purified by treatment with lysozyme and sodium dodecylsulfate, they do not show the decrease in optical density at 600 nm typical of germination nor do they produce offspring.  相似文献   

5.
The synthesis and deposition of 22,000-dalton (22K) spore coat protein were examined immunochemically on the sporulating cells of Bacillus megaterium ATCC 12872 using the antibody to purified 22K spore coat protein. This antibody cross-reacted with 44K and 25K proteins in immunoblot analysis of dormant spore coat proteins. Immunoblot analysis on the sporulating cells showed that 22K protein was detected from t8 in forespore coat protein fractions. Sandwich enzyme immunoassay revealed that 22K protein in the spore coat protein fraction appeared at t6 and reached a plateau at t9, and 22K protein in the mother cell cytoplasmic fraction was detected at only t7 and t8 at a very low level.  相似文献   

6.
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.  相似文献   

7.
By use of the antigen-antibody techniques we have studied whether asporogenic mutants of Bacillus subtilis can synthesize the spore coat protein. Antibody specific to spore coat protein was prepared and used to demonstrate that the spore coat protein was synthesized at the early stage of sporulation. We report here that asporogenic mutants synthesize the spore coat protein.  相似文献   

8.
At maturity, the spores of Dictyostelium are suspended in a viscous fluid droplet, with each spore being surrounded by its own spore coat. Certain glycoproteins characteristic of the spore coat are also dissolved in this fluid matrix after the spore coat is formed. To determine whether any proteins of the coat reside in this fluid phase earlier during the process of spore coat assembly, pairs of strains which differed in a spore coat protein carbohydrate marker were mixed and allowed to form spore coats in each other's presence. We reasoned that proteins belonging to an early, soluble, extracellular pool would be incorporated into the spore coats of both strains. To detect trans-incorporation, spores were labeled with a fluorescent antibody against the carbohydrate marker and each spore's fluorescence was analyzed by flow cytometry. Several proteins of both the outer and inner protein layers of the coat appeared to be faithfully and reciprocally trans-incorporated and hence judged to belong to a soluble, assembly-phase pool. Western blot analysis of sorted spores, and EM localization, confirmed this conclusion. In contrast, one outer-layer protein was not trans-incorporated, and was concluded to be insoluble at the time of secretion. Three classes of spore coat proteins can be described: (a) Insoluble from the time of secretion; (b) present in the early, soluble pool but not the late pool after spore coat formation; and (c) present in the soluble pool throughout spore coat assembly. These classes may, respectively: (a) Nucleate spore coat assembly; (b) comprise a scaffold defining the dimensions of the nascent spore coat; and (c) complete the assembly process by intercalation into the scaffold.  相似文献   

9.
Electron microscopy of thin sections of dormant and germinating spores of Bacillus subtilis 168 revealed a progressive change in the structure of the cortex, outer spore coat, and inner spore coat. The initial changes were observed in the cortex region, which showed a loose fibrous network within 10 min of germination, and in the outer spore coat, which began to be sloughed off. The permeability of the complex outer spore layers was modified within 10 min, since, at this time, the internal structures of the spore coat were readily stainable. A nicking degradation action of the laminated inner spore coat began at 20 min, and this progressed for the next 20 min leading to the loosening of the inner spore coat. By 30 min, the outer spore coat showed signs of disintegration, and at 40 min, both the outer and inner spore coats were degraded extensively. At 30 to 40 min, a period just preceding net deoxyribonucleic acid synthesis, mesosomes became very prominent in the inner spore core and the cell wall began to thicken around the spore core. At 50 min, an emerging cell was observed, and by 60 min, there was clear evidence for elongation of the emerging cell and the presence of two nuclear bodies. At 90 min, elongation had been followed by the first cell division. There was evidence for spore coat fragments at the opposite poles of the dividing cell.  相似文献   

10.
《Experimental mycology》1991,15(1):44-54
DormantPilobolus longipes spores metabolized fructose primarily to ethanol, CO2, and trehalose. Cyclic AMP-induced spore activation was accompanied by a large stimulation of glycolytic activity. Mobilization of reserves, which was cyclic AMP dependent, accounted for a portion of the glycolytic product. The remaining product was derived from exogenous fructose. Increases in both fructose transport activity and hexose 6-phosphate levels were associated with 6-deoxyglucose-induced spore activation. Phosphofructokinase-1 activity in spore extracts was almost totally dependent upon fructose, 2,6-bisphosphate. High fructose 2,6-bisphosphate levels were correlated with rapid fructose metabolism. However, fructose alone caused a rise in fructose 2,6-bisphosphate content (sufficient to fully stimulate phosphofructokinase-1 activity) but there was no concurrent stimulation of glycolysis. These results suggest that glycolytic rates are determined mainly by hexose 6-phosphate levels and that cyclic AMP regulation of transport is an important determinant of hexose 6-phosphate concentration.  相似文献   

11.
We previously reported a new species Paenibacillus motobuensis. The type strain MC10 was stained gram-negative, but had a gram-positive cell wall structure and its spore had a characteristic star shape. The spore and sporulation process of P. motobuensis strain MC10 were examined by electron microscopy using the technique of freeze-substitution in thin sectioning. The structure of the dormant spore was basically the same as that of the other Bacillus spp. The core of the spore was enveloped with two main spore components, the cortex and the spore coat. In thin section, the spore showed a star-shaped image, which was derived from the structure of the spore coat, which is composed of three layers, namely the inner, middle and outer spore coat. The middle coat was an electron-dense thick layer and had a characteristic ridge. By scanning electron microscopic observation, the ridges were seen running parallel to the long axis of the oval-shaped spore. The process of sporulation was essentially the same as that of the other Bacillus spp. The forespore was engulfed by the mother cell membrane, then the spore coat and the cortex were accumulated in the space between the mother cell membrane and forespore membrane. The mother cell membrane seemed to participate in the synthesis of the spore coat. MC10 strain showed almost identical heat resistance to that of B. subtilis.  相似文献   

12.
Three conditional Bacillus cereus mutants altered in the assembly or formation of spore coat layers were analyzed. They all grew as well as the wild type in an enriched or minimal medium but produced lysozyme and octanol-sensitive spores at the nonpermissive temperature (35 to 38 degrees C). The spores also germinated slowly when produced at 35 degrees C. Temperature-shift experiments indicated that the defective protein or regulatory signal is expressed at the time of formation of the outer spore coat layers. Revertants regained all wild-type spore properties at frequencies consistent with initial point mutations. Spore coat defects were evident in thin sections and freeze-etch micrographs of mutant spores produced at 35 degrees C. In addition, one mutant contained an extra surface deposit, perhaps unprocessed spore coat precursor protein. A prevalent band of about 65,000 daltons (the same size as the presumptive precursor) was present in spore coat extracts of this mutant and may be incorrectly processed to mature spore coat polypeptides. Another class of mutants was defective in the late uptake of half-cystine residues into spore coats. Such a defect could lead to improper formation of the outer spore coat layers.  相似文献   

13.
Sporulation in Bacillus subtilis. Morphological changes   总被引:19,自引:10,他引:9       下载免费PDF全文
1. When Bacillus subtilis was grown in a medium in which sporulation occurred well-defined morphological changes were seen in thin sections of the cells. 2. Over a period of 7.5hr. beginning 2hr. after the initiation of sporulation the following major stages were observed: axial nuclear-filament formation, spore-septum formation, release of the fore-spore within the cell, development of the cortex around the fore-spore, the laying down of the spore coat and the completion of the corrugated spore coat before release of the spore from the mother cell. 3. The appearance of refractile bodies and 2,6-dipicolinic acid and the development of heat-resistance began between 5 and 6.5hr. after initiation of sporulation. 4. The appearance of 2,6-dipicolinic acid and the onset of refractility appeared to coincide with a diminution of electron density in the spore core and cortex. 5. Heat-resistance was associated with the terminal stage, the completion of the spore coat. 6. The spore coat was composed of an inner and an outer layer, each of which consisted of three or four electron-dense laminae. 7. Serial sections through cells at an early stage of sporulation showed that the membranes of each spore septum were always continuous with the membranes of a mesosome, which was itself in close contact with the bacterial or spore nucleoid. 8. These changes were correlated with biochemical events occurring during sporulation.  相似文献   

14.
Electron microscopic observation showed that the spore coat of Bacillus thiaminolyticus consisted of at least four layers; a high electron dense outer spore coat layer with five prominent ridges, a middle spore coat layer including two layers of a high and a low electron density, and an inner spore coat layer composing six to seven laminated layers. Rapid breakdown of the cortex and swelling of the core occurred in spores which were allowed to germinate by L-alanine for 45 min, whereas no change of surface feature was observed by scanning electron microscopy. Germination and outgrowth of spores in nutrient broth proceeded, being accompanied by morphological changes, in three steps; the first is a rapid breakdown of the cortex and swelling of the core, the second degradation of the inner layer at prominent region of the spore coat, and the last rupture of the spore coat and emergence of a young vegetative cell.  相似文献   

15.
FORMATION AND STRUCTURE OF THE SPORE OF BACILLUS COAGULANS   总被引:19,自引:2,他引:17       下载免费PDF全文
Spore formation in Bacillus coagulans has been studied by electron microscopy using an epoxy resin (Araldite) embedding technique. The developmental stages from the origin of the initial spore septum to the mature spore were investigated. The two forespore membranes developed from the double layer of cytoplasmic membrane. The cortex was progressively deposited between these two membranes. The inner membrane finally became the spore protoplasmic membrane, and the outer membrane part of the inner spore coat or the outer spore coat itself. In the mature spore the completed integuments around the spore protoplasm consisted of the cortex, a laminated inner coat, and a dense outer coat. No exosporium was observed. The method of formation of the cortex and the spore coats is discussed.  相似文献   

16.
Electron microscopic observation showed that the spore coat of Bacillus thiaminolyticus consisted of at least four layers; a high electron dense outer spore coat layer with five prominent ridges, a middle spore coat layer including two layers of a high and a low electron density, and an inner spore coat layer composing six to seven laminated layers. Rapid breakdown of the cortex and swelling of the core occurred in spores which were allowed to germinate by L -alanine for 45 min, whereas no change of surface feature was observed by scanning electron microscopy. Germination and outgrowth of spores in nutrient broth proceeded, being accompanied by morphological changes, in three steps; the first is a rapid breakdown of the cortex and swelling of the core, the second degradation of the inner layer at a prominent region of the spore coat, and the last rupture of the spore coat and emergence of a young vegetative cell.  相似文献   

17.
The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and improved two-dimensional electrophoretic separations, followed by matrix-assisted laser desorption ionization-time of flight and/or dual mass spectrometry. We identified 38 B. subtilis spore proteins, 12 of which are known coat proteins. We propose that, of the novel proteins, YtaA, YvdP, and YnzH are bona fide coat proteins, and we have renamed them CotI, CotQ, and CotU, respectively. In addition, we initiated a study of coat proteins in B. anthracis and identified 11 spore proteins, 6 of which are candidate coat or exosporium proteins. We also queried the unfinished B. anthracis genome for potential coat proteins. Our analysis suggests that the B. subtilis and B. anthracis coats have roughly similar numbers of proteins and that a core group of coat protein species is shared between these organisms, including the major morphogenetic proteins. Nonetheless, a significant number of coat proteins are probably unique to each species. These results should accelerate efforts to develop B. anthracis detection methods and understand the ecological role of the coat.  相似文献   

18.
19.
The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.  相似文献   

20.
Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号