首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Most prototrophic strains of Escherichia coli become restricted for methionine at 44 degrees C. A mutant strain (RG62 metK) in which the level of S-adenosylmethionine synthetase activity is only 10 to 20% of normal shows constitutive expression of one of the heat shock proteins, the lysU gene product, lysyl-tRNA synthetase form II, at 37 degrees C. These findings suggested a possible linkage between methionine metabolism and heat shock. We examined the induction of heat shock polypeptides in strain RG62 (metK) and in its parent, RG (metK+), from which it was derived by spontaneous mutation. Exponential-phase cultures of the two strains were pulse-labeled with [3H]leucine shortly after a shift from 37 to 44 degrees C, and the total cellular polypeptides were examined by two-dimensional electrophoresis. The results confirmed the constitutive production of the lysU gene product previously reported for strain RG62, but also revealed that the induction of 2 of the 17 heat shock polypeptides, C14.7 and G13.5, was markedly depressed. Otherwise the heat shock induction pattern was similar in timing and magnitude in the two strains. Transformation of the mutant strain with a plasmid, pK8, containing the metK coding sequence and promoter region as a 1.8-kilobase insert into pBR322 restored normal induction of C14.7 and G13.5, but did not prevent constitutive expression of the lysU gene product in the medium required for growth of this strain. The three heat shock polypeptides abnormally controlled in strain RG62 are the three polypeptides which are not induced when rapid synthesis of the htpR gene product is induced by isopropyl-beta-D-thiogalactopyranoside at 28 degree C (R. A. VanBogelen, M. A. Acton, and F. C. Neidhardt, Genes Dev. 1:525-531, 1987). We postulate that induction of these three polypeptides involves metabolic signals in addition to the synthesis of the htpR gene product and that strain RG62 (metK) fails to produce the signals involved in induction of C14.7 and G13.5 on a shift-up in temperature and produces the signal related to lysU induction even at 37 degree C.  相似文献   

3.
K Ito  S Udaka    H Yamagata 《Journal of bacteriology》1992,174(7):2281-2287
A gene of Bacillus brevis HPD31 analogous to the Escherichia coli lon gene has been cloned and characterized. The cloned gene (B. brevis lon gene) encodes a polypeptide of 779 amino acids with a molecular weight of 87,400 which resembles E. coli protease La, the lon gene product. Fifty-two percent of the amino acid residues of the two polypeptides were identical. The ATP-binding sequences found in E. coli protease La were highly conserved. The promoter of the B. brevis lon gene resembled that recognized by the major RNA polymerase of Bacillus subtilis and did not contain sequences homologous to the E. coli heat shock promoters. The B. brevis lon gene was inactivated by insertion of the neomycin resistance gene. A mutant B. brevis carrying the inactivated lon gene showed diminished ability for the degradation of abnormal polypeptides synthesized in the presence of puromycin.  相似文献   

4.
5.
Possibility of correction of proteolytic processes in cells of Escherichia coli and Pseudomonas aeruginosa has been studied. For this purpose recombinant plasmids directing the synthesis of antisense RNAs were constructed. In Ps. aeruginosa the synthesis of htpR antisense RNA resulted in 2.5-fold reduction of the intensity of degradation of 3H-puromycin polypeptides under heat shock conditions. An antisense RNA complementary to the 5'- end of E. coli lon gene decreased the same index to the level observed in lon- mutants. Genes homologous to htpR and lon genes of E. coli were found in Pseudomonas: bacteria in hybridisation experiments. This finding suggests that the genetic system of heat shock in these microorganisms is organized in a similar manner.  相似文献   

6.
The half lives of mRNA for Escherichia coli chloramphenicol-acetyltransferase, Bacillus amyloliquefaciens alpha-amylase and human leucocyte interferon were measured in E. coli cells by molecular RNA.DNA hybridization. The effect of mutation in pnp gene, coding polynucleotide phosphorylase, on the stability of these mRNA was studied. The half life of interferon mRNA increases from 25 to 90 s in the pnp mutant, resulting in an increase of interferon accumulation. The stability of interferon in E. coli cells depends on the htpR gene, controlling the heat shock response. The yields of leucocyte interferons alpha-2, alpha I-1 and fibroblast interferon beta increase ten times in htpR mutants. Thus, by using pnp and htpR mutants it is possible to enhance considerably the eukaryotic gene expression in bacterial cells.  相似文献   

7.
lon gene product of Escherichia coli is a heat-shock protein   总被引:30,自引:15,他引:15  
The product of the pleiotropic gene lon is a protein with protease activity and has been tentatively identified as protein H94.0 on the reference two-dimensional gel of Escherichia coli proteins. Purified Lon protease migrated with the prominent cellular protein H94.0 in E. coli K-12 strains. Peptide map patterns of Lon protease and H94.0 were identical. A mutant form of the protease had altered mobility during gel electrophoresis. An E. coli B/r strain that is known to be defective in Lon function contained no detectable H94.0 protein under normal growth conditions. Upon a shift to 42 degrees C, however, the Lon protease was induced to high levels in K-12 strains and a small amount of protein became detectable at the H94.0 location in strain B/r. Heat induction of Lon protease was dependent on the normal allele of the regulatory gene, htpR, establishing lon as a member of the high-temperature-production regulon of E. coli.  相似文献   

8.
Mutations in hipA, a gene of Escherichia coli K-12, greatly reduce the lethality of selective inhibition of peptidoglycan synthesis. These mutations have also been found to reduce the lethality that accompanies either selective inhibition of DNA synthesis or heat shock of strains defective in htpR. In addition, the mutant alleles of hipA are responsible for a reversible cold-sensitive block in cell division and synthesis of macromolecules, particularly peptidoglycan. Recombination between the chromosome of hipA mutants and plasmids containing noncomplementing fragments of hipA+ revealed that the mutations responsible for both cold sensitivity and reduced lethality were probably identical and, in any case, lay within the first 360 base pairs of the coding region of hipA, probably within the first 50 base pairs. We suggest that the pleiotropic effects of mutations in hipA reflect the involvement of this gene in cell division.  相似文献   

9.
A mutation in the lon (capR) gene of Escherichia coli K-12 effects several phenotypic alterations in the mutant cell, such as overproduction of capsular polysaccharide and sensitivity to ultraviolet or ionizing radiation. A previously cloned 9.2-megadalton (Md) EcoRI fragment contained the capR+ gene and specified two polypeptides, 94 kilodaltons (K) and 67K. To provide evidence that the 94K polypeptide is the capR+ gene product, we constructed a capR+ plasmid pJMC40, having a 2.0-Md EcoRI-PstI fragment which codes only for the 94K polypeptide. Plasmids pJMC22 and pJMC30, having deletions of 0.7 and 0.8 Md, respectively, from one end of the 2.0-Md fragment, were also constructed. Each codes for a shortened stable polypeptide (from the 94K). Neither plasmid can confer the capR+ phenotype to capR mutants, confirming that the unaltered 94K polypeptide is the capR+ gene product. Plasmids pJMC51 and pJMC52 each have a deletion of 0.7 Md from the other end of the 2.0-Md fragment, differing only in the orientation of the remaining 1.3-Md fragment with respect to the cloning vehicle. They are nonfunctional with respect to capR+ and do not code for a common polypeptide from the 1.3-Md fragment. These data indicate that the fragments in pJMC22 and pJMC30, which both code for shortened 94K polypeptides, contain the promoter-operator region of the capR gene. The deletion plasmids were also used to map chromosomal capR mutations.  相似文献   

10.
11.
The mechanism by which large premature termination fragments of beta-galactosidase were degraded in Escherichia coli was studied using quantitative immunoprecipitation techniques. Two different lacZ nonsense mutants which produced apparent primary translation products of 96,000 and 109,000 daltons, respectively, were both shown to produce a second beta-galactosidase-related polypeptide of Mr = 90,000. These 90,000-dalton polypeptides appeared to be the same in both strains since they co-migrated when analyzed as a mixture on sodium dodecyl sulfate-polyacrylamide gels and were indistinguishable when analyzed by one-dimensional peptide mapping. Pulse-chase experiments established a stoichiometric precursor-product relationship between the primary mutant gene products (called the A polypeptides) and the common 90,000-dalton polypeptide (called the B polypeptide). No intermediates were detected between the A and B polypeptides. We propose that there is a common pathway for the degradation of these different large fragments of beta-galactosidase. According to this model, the first step would be a specific endoproteolytic cleavage of the primary translation product which produces the 90,000-dalton polypeptide as a common intermediate. The kinetic analysis demonstrated a first order decay of both A and B polypeptides but, surprisingly, the first order rate constant for the decay of A appeared dependent upon the induction regimen. This result suggested that degradation may possibly be autoregulated either by the intracellular level of A or by other intermediates in the degradation pathway.  相似文献   

12.
13.
By means of one-dimensional electrophoresis, it is shown that in radiation-resistant Gamr444 and Gamr445 mutants of Escherichia coli K-12 high-molecular weight heat shock proteins are hyperproduced at 32-37 degrees C and are induced more intensively during heat shock (in comparison to the parental wild-type strain AB1157). When the missense htpR15 mutation of the positive regulatory htpR gene for heat shock proteins was introduced by transduction into the genome of the Gamr444 mutant, its enhanced radiation-resistance disappeared but could be restored upon introduction of pKV3 plasmid bearing the htpR+ gene. These data show that heat shock proteins are participating in the enhanced radioresistance of Gamr mutants.  相似文献   

14.
A thermoresistant htpR mutant having a decreased level of proteolytic activity has been selected in E. coli strain K802 after the directed mutagenesis in vivo. The mutation results in the bacteriophage T7 RNA-polymerase stability, aminoglycosidephosphotransferase stability as well as in the decrease in the rate of proteolytic degradation of cytoplasmic proteins during the heat shock. The obtained mutant strain can, probably be used as a host for alien polypeptides production.  相似文献   

15.
Overexpression of the Escherichia coli sn-glycerol-3-phosphate (glycerol-P) acyltransferase, an integral membrane protein, causes formation of ordered arrays of the enzyme in vitro. The formation of these tubular structures did not occur in an E. coli strain bearing a mutation in the htpR gene, the regulatory gene for the heat shock response. The htpR165 mutation was shown by genetic analysis to be the lesion responsible for blockage of tubule formation. Similar amounts of glycerol-P acyltransferase were produced in isogenic htpR+ and htpR165 strains, ruling out an effect of htpR165 on expression of glycerol-P acyltransferase. Further, phospholipid metabolism was not altered in either strain after induction of glycerol-P acyltransferase synthesis. Increased glycerol-P acyltransferase synthesis caused a partial induction of the heat shock response which was dependent upon a wild type htpR gene. The heat shock proteins induced were identified as the groEL and dnaK gene products on two-dimensional gels. These two proteins have been implicated in the assembly of bacteriophage coats. These heat shock proteins appear essential for tubule formation.  相似文献   

16.
17.
Limited proteolysis studies on alanine racemase suggested that the enzyme subunit is composed of two domains (Galakatos, N. G., and Walsh, C. T. (1987) Biochemistry 26, 8475-8480). We have constructed a mutant gene that tandemly encodes the two polypeptides of the Bacillus stearothermophilus enzyme subunit cleaved at the position corresponding to the predicted hinge region. The mutant gene product purified was shown to be composed of two sets of the two polypeptide fragments and was immunologically identical to the wild-type enzyme. The mutant enzyme, i.e. the fragmentary alanine racemase, was active in both directions of the racemization of alanine. The maximum velocity (Vmax) was about half that of the wild-type enzyme, and the Km value was about double. Absorption and circular dichroism spectra of the fragmentary enzyme were similar to those of the wild-type enzyme. An attempt was made to separately express in Escherichia coli a single polypeptide corresponding to each domain, but no protein reactive with the antibody against the wild-type alanine racemase was produced. Therefore, it is suggested that the two polypeptide fragments can fold into an active structure only when they are co-translated and that they correspond to structural folding units in the parental polypeptide chain.  相似文献   

18.
A deletion htpR mutant of Escherichia coli has been constructed on the basis of site-directed mutagenesis. To this end, the chromosomal allele of htpR gene was substituted by a mutant allele introduced into the cell with a recombinant plasmid. The htpR mutant is characterized by a reduced level of proteolysis and therefore by a decreased rate of proteolytic degradation of RNA polymerase of bacteriophage T7. The mutation in htpR is linked with chloramphenicol resistance.  相似文献   

19.
Yeast contain two nontandemly repeated enolase structural genes which have been isolated on bacterial plasmids designated peno46 and peno8 (Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A. (1981) J. Biol. Chem. 256, 1385-1395). In order to study the expression of the enolase genes in vivo, the resident enolase gene in a wild type yeast strain corresponding to the gene isolated on peno46 was replaced with a deletion, constructed in vitro, which lacks 90% of the enolase coding sequences. Three catalytically active enolases are resolved differ DEAE-Sephadex chromatography of wild type cellular extracts. As expected, a single form of enolase was resolved from extracts of the mutant cell. Immunological and electrophoretic analyses of the multiple forms of enolase confirm that two enolase genes are expressed in wild type cells and that isozymes are formed in the cell by random assortment of the two polypeptides into three active enolase dimers. The yeast enolase loci have been designated ENO1 and ENO2. The deletion mutant lacks the enolase 1 polypeptide confirming that this polypeptide is encoded by the gene isolated on peno46. The intracellular steady state concentrations of the two polypeptides are dependent on the carbon source used to propagate the cells. Log phase cells grown on glucose contain 20-fold more enolase 2 polypeptide than enolase 1 polypeptide, whereas cells grown on ethanol or glycerol plus lactate contain similar amounts of the two polypeptides. The 20-fold higher than in cells grown on the nonfermentable carbon sources. In vitro translation of total cellular RNA suggests that the steady state concentrations of the two enolase mRNAs in cells grown on different carbon sources are proportional to the steady state concentrations of the respective enolase polypeptides.  相似文献   

20.
The synthesis of Mn- and FeSODs in response to temperature changes was examined in strains of Escherichia coli with different mutations in sod and htpR genes. Growth at or shift to elevated temperatures induced FeSOD but not MnSOD. The induction of FeSOD by heat was inhibited by chloramphenicol and was independent of the heat shock (htpR-controlled) regulon. FeSOD was more stable at 42 degrees C than was MnSOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号