首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The retrieval of ancient human DNA sequences.   总被引:34,自引:5,他引:29       下载免费PDF全文
DNA was extracted from approximately 600-year-old human remains found at an archaeological site in the southwestern United States, and mtDNA fragments were amplified by PCR. When these fragments were sequenced directly, multiple sequences seemed to be present. From three representative individuals, DNA fragments of different lengths were quantified and short overlapping amplification products cloned. When amplifications started from <40 molecules, clones contained several different sequences. In contrast, when they were initiated by a few thousand molecules, unambiguous and reproducible results were achieved. These results show that more experimental work than is often applied is necessary to ensure that DNA sequences amplified from ancient human remains are authentic. In particular, quantitation of the numbers of amplifiable molecules is a useful tool to determine the role of contaminating contemporary molecules and PCR errors in amplifications from ancient DNA.  相似文献   

2.
Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies.  相似文献   

3.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

4.
A PCR assay which allows detection and quantification of Epichloë endophytes in tissues of the grass Bromus erectus is described. PCR with specific primers flanking a microsatellite-containing locus (MS primers) amplified fragments 300 to 400 bp in length from as little as 1.0 pg of fungal genomic DNA in 100 ng of DNA from infected plant material. When annealing temperatures were optimized, all Epichloë and Acremonium strains tested, representing many of the known taxonomic groups, yielded an amplification product, indicating that the MS primers may be useful for in planta detection of a variety of related species, including agronomically important Acremonium coenophialum and Acremonium lolii. No fragments were generated from DNA isolates from uninfected plant material or from unrelated fungi isolated from B. erectus. For diagnostic applications, a B. erectus-specific primer pair was designed for use in multiplex PCR to allow simultaneous amplification of plant and fungal DNA sequences, providing an internal control for PCR failure caused by inhibitory plant compounds present in DNA extracts. For quantitative applications, a heterologous control template in primer binding sites complementary to the MS primers was constructed for use in competitive PCR, allowing direct quantification of Epichloë in plant DNA extracts. The fungal DNA present in infected leaves of B. erectus between 1 and 20 pg per 100 ng of leaf DNA, but the amounts of fungal DNA present in the sheath and blade of a given leaf were correlated, indicating that the degree of infection varied between plant individuals but that leaves were colonized in a uniform way.  相似文献   

5.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

6.
One of the key problems in the study of ancient DNA is that of authenticating sequences obtained from PCR amplifications of highly degraded samples. Contamination of ancient samples and postmortem damage to endogenous DNA templates are the major obstacles facing researchers in this task. In particular, the authentication of sequences obtained from ancient human remains is thought by many to be rather challenging. We propose a novel approach, based on the c statistic, that can be employed to help identify the sequence motif of an endogenous template, based on a sample of sequences that reflect the nucleotide composition of individual template molecules obtained from ancient tissues (such as cloned products from a PCR amplification). The c statistic exploits as information the most common form of postmortem damage observed among clone sequences in ancient DNA studies, namely, lesion-induced substitutions caused by cytosine deamination events. Analyses of simulated sets of templates with miscoding lesions and real sets of clone sequences from the literature indicate that the c-based approach is highly effective in identifying endogenous sequence motifs, even when they are not present among the sampled clones. The proposed approach is likely to be of general use to researchers working with DNA from ancient tissues, particularly from human remains, where authentication of results has been most challenging. [Reviewing Editor: Dr. Magnus Nordborg]  相似文献   

7.
This method is designed to assemble long, continuous DNA sequences using minimal amounts of fragmented ancient DNA as template. This is achieved by a two-step approach. In the first step, multiple fragments are simultaneously amplified in a single multiplex reaction. Subsequently, each of the generated fragments is amplified individually using a single primer pair, in a standard simplex (monoplex) PCR. The ability to amplify multiple fragments simultaneously in the first step allows the generation of large amounts of sequence from rare template DNA, whereas the second nested step increases specificity and decreases amplification of contaminating DNA. In contrast to current protocols using many template-consuming simplex PCRs, the method described allows amplification of several kilobases of sequence in just one reaction. It thus combines optimal template usage with a high specificity and can be performed within a day.  相似文献   

8.
Effect of highly fragmented DNA on PCR.   总被引:3,自引:1,他引:2       下载免费PDF全文
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.  相似文献   

9.
While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 1011 copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.  相似文献   

10.

Background

The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation (“miscoding lesions”) has been the object of extensive investigations.

Methodology/Principal Findings

To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp) mitochondrial (mt) DNA sequences obtained from the 5,350–5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Ötzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp) mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85%) of the observed nucleotide misincorporations in ancient sequences.

Conclusions/Significance

This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine→thymine/guanine→adenine) transitions and that type 1 transitions are essentially PCR artifacts.  相似文献   

11.
Proof of authenticity is the greatest challenge in palaeogenetic research, and many safeguards have become standard routine in laboratories specialized on ancient DNA research. Here we describe an as-yet unknown source of artifacts that will require special attention in the future. We show that ancient DNA extracts on their own can have an inhibitory and mutagenic effect under PCR. We have spiked PCR reactions including known human test DNA with 14 selected ancient DNA extracts from human and nonhuman sources. We find that the ancient DNA extracts inhibit the amplification of large fragments to different degrees, suggesting that the usual control against contaminations, i.e., the absence of long amplifiable fragments, is not sufficient. But even more important, we find that the extracts induce mutations in a nonrandom fashion. We have amplified a 148-bp stretch of the mitochondrial HVRI from contemporary human template DNA in spiked PCR reactions. Subsequent analysis of 547 sequences from cloned amplicons revealed that the vast majority (76.97%) differed from the correct sequence by single nucleotide substitutions and/or indels. In total, 34 positions of a 103-bp alignment are affected, and most mutations occur repeatedly in independent PCR amplifications. Several of the induced mutations occur at positions that have previously been detected in studies of ancient hominid sequences, including the Neandertal sequences. Our data imply that PCR-induced mutations are likely to be an intrinsic and general problem of PCR amplifications of ancient templates. Therefore, ancient DNA sequences should be considered with caution, at least as long as the molecular basis for the extract-induced mutations is not understood.  相似文献   

12.
We present a novel method for the PCR amplification of unknown DNA that flanks a known segment directly from human genomic DNA. PCR requires that primer annealing sites be present on each end of the DNA segment that is to be amplified. In this method, known DNA is placed on the uncharacterized side of the sequence of interest via DNA polymerase mediated generation of a PCR template that is shaped like a pan with a handle. Generation of this template permits specific amplification of the unknown sequence. Taq (DNA) polymerase was used to form the original template and to generate the PCR product. 2.2 kb of the beta-globin gene, and 657 bp of the 5' flanking region of the cystic fibrosis transmembrane conductance regulator gene, were amplified directly from human genomic DNA using primers that initially flank only one side of the region amplified. This method will provide a powerful tool for acquiring DNA sequence information.  相似文献   

13.
Recent development of the long PCR technology has provided an invaluable tool in many areas of molecular biology. However, long PCR amplification fails whenever the DNA template is imperfectly preserved. We report that Escherichia coli exonuclease III, a major repair enzyme in bacteria, strikingly improves the long PCR amplification of damaged DNA templates. Escherichia coli exonuclease III permitted or improved long PCR amplification with DNA samples submitted to different in vitro treatments known to induce DNA strand breaks and/or apurinic/apyrimidinic (AP) sites, including high temperature (99°C), depurination at low pH and near-UV radiation. Exonuclease III also permitted or improved amplification with DNA samples that had been isolated several years ago by the phenol/chloroform method. Amelioration of long PCR amplification was achieved for PCR products ranging in size from 5 to 15.4 kb and with DNA target sequences located either within mitochondrial DNA or the nuclear genome. Exonuclease III increased the amplification of damaged templates using either rTth DNA polymerase alone or rTth plus Vent DNA polymerases or Taq plus Pwo DNA polymerases. However, exonuclease III could not improve PCR amplification from extensively damaged DNA samples. In conclusion, supplementation of long PCR mixes with E.coli exonuclease III may represent a major technical advance whenever DNA samples have been partly damaged during isolation or subsequent storage.  相似文献   

14.
Knowledge of the kinds and numbers of nuclear point mutations in human tissues is essential to the understanding of the mutation mechanisms underlying genetic diseases. However, nuclear point mutant fractions in normal humans are so low that few methods exist to measure them. We have now developed a means to scan for point mutations in 100 bp nuclear single copy sequences at mutant fractions as low as 10–6. Beginning with about 108 human cells we first enrich for the desired nuclear sequence 10 000-fold from the genomic DNA by sequence-specific hybridization coupled with a biotin–streptavidin capture system. We next enrich for rare mutant sequences 100-fold against the wild-type sequence by wide bore constant denaturant capillary electrophoresis (CDCE). The mutant-enriched sample is subsequently amplified by high fidelity PCR using fluorescein-labeled primers. Amplified mutant sequences are further enriched via two rounds of CDCE coupled with high fidelity PCR. Individual mutants, seen as distinct peaks on CDCE, are then isolated and sequenced. We have tested this approach by measuring N-methyl-′-nitro-N-nitrosoguanidine (MNNG)-induced point mutations in a 121 bp sequence of the adenomatous polyposis coli gene (APC) in human lymphoblastoid MT1 cells. Twelve different MNNG-induced GC→AT transitions were reproducibly observed in MNNG-treated cells at mutant fractions between 2 × 10–6 and 9 × 10–6. The sensitivity of this approach was limited by the fidelity of Pfu DNA polymerase, which created 14 different GC→TA transversions at a mutant fraction equivalent to ~10–6 in the original samples. The approach described herein should be general for all DNA sequences suitable for CDCE analysis. Its sensitivity and capacity would permit detection of stem cell mutations in tissue sectors consisting of ~108 cells.  相似文献   

15.
Sequencing PCR DNA amplified directly from a bacterial colony   总被引:7,自引:0,他引:7  
We show that PCR product asymmetrically amplified directly from a bacterial colony can be sequenced to yield results as good as those obtained when purified template DNA is used for the PCR amplification step. With either template, greater than 300 nucleotides can be read from a typical sequencing reaction. Taq DNA polymerase was used for both the PCR amplification and sequencing reactions.  相似文献   

16.
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes.  相似文献   

17.
We describe the use of in vitro DNA amplification for production of double-stranded, biotin-labeled DNA probes. Specifically, a 124 BP DNA segment of the Y chromosome-specific 3.4 KB repeat was amplified in preparations of human genomic DNA using the polymerase chain reaction (PCR) and a thermostable DNA polymerase. The PCR products were amplified further in the presence of a molar excess of biotin-11-dUTP. The resulting double-stranded DNA segments showed a high amount of incorporated biotin-11-dUTP. The probes were used in DNA-DNA hybridization experiments without further purification. When DNA sequences flanking the target region are known, probe generation by enzymatic amplification offers a rapid and efficient alternative to molecular cloning and nick translation.  相似文献   

18.

Background

Identification of DNA sequence diversity is a powerful means for assessing the species present in environmental samples. The most common molecular strategies for estimating taxonomic composition depend upon PCR with universal primers that amplify an orthologous DNA region from a range of species. The diversity of sequences within a sample that can be detected by universal primers is often compromised by high concentrations of some DNA templates. If the DNA within the sample contains a small number of sequences in relatively high concentrations, then less concentrated sequences are often not amplified because the PCR favours the dominant DNA types. This is a particular problem in molecular diet studies, where predator DNA is often present in great excess of food-derived DNA.

Results

We have developed a strategy where a universal PCR simultaneously amplifies DNA from food items present in DNA purified from stomach samples, while the predator's own DNA is blocked from amplification by the addition of a modified predator-specific blocking primer. Three different types of modified primers were tested out; one annealing inhibiting primer overlapping with the 3' end of one of the universal primers, another annealing inhibiting primer also having an internal modification of five dI molecules making it a dual priming oligo, and a third elongation arrest primer located between the two universal primers. All blocking primers were modified with a C3 spacer. In artificial PCR mixtures, annealing inhibiting primers proved to be the most efficient ones and this method reduced predator amplicons to undetectable levels even when predator template was present in 1000 fold excess of the prey template. The prey template then showed strong PCR amplification where none was detectable without the addition of blocking primer. Our method was applied to identifying the winter food of one of the most abundant animals in the world, the Antarctic krill, Euphausia superba. Dietary item DNA was PCR amplified from a range of species in krill stomachs for which we had no prior sequence knowledge.

Conclusion

We present a simple, robust and cheap method that is easily adaptable to many situations where a rare DNA template is to be PCR amplified in the presence of a higher concentration template with identical PCR primer binding sites.  相似文献   

19.
While standard DNA‐sequencing approaches readily yield genotypic sequence data, haplotype information is often of greater utility for population genetic analyses. However, obtaining individual haplotype sequences can be costly and time‐consuming and sometimes requires statistical reconstruction approaches that are subject to bias and error. Advancements have recently been made in determining individual chromosomal sequences in large‐scale genomic studies, yet few options exist for obtaining this information from large numbers of highly polymorphic individuals in a cost‐effective manner. As a solution, we developed a simple PCR‐based method for obtaining sequence information from individual DNA strands using standard laboratory equipment. The method employs a water‐in‐oil emulsion to separate the PCR mixture into thousands of individual microreactors. PCR within these small vesicles results in amplification from only a single starting DNA template molecule and thus a single haplotype. We improved upon previous approaches by including SYBR Green I and a melted agarose solution in the PCR, allowing easy identification and separation of individually amplified DNA molecules. We demonstrate the use of this method on a highly polymorphic estuarine population of the copepod Eurytemora affinis for which current molecular and computational methods for haplotype determination have been inadequate.  相似文献   

20.
Recombinant DNA molecules are often generated during the polymerase chain reaction (PCR) when partially homologous templates are available [e.g., see Pääbo et al. (1990) J. Biol. Chem. 265, 4718-4721]. It has been suggested that these recombinant molecules are a consequence of truncated extension products annealing to partially homologous templates on subsequent PCR cycles. However, we demonstrate here that recombinants can be generated during a single round of primer extension in the absence of subsequent heat denaturation, indicating that template-switching produces some of these recombinant molecules. Two types of template-switches were observed: (i) switches to pre-existing templates and (ii) switches to the complementary nascent strand. Recombination is reduced several fold when the complementary template strands are physically separated by attachment to streptavidin magnetic beads. This result supports the hypothesis that either the polymerase or at least one of the two extending strands switches templates during DNA synthesis and that interaction between the complementary template strands is necessary for efficient template-switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号