首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid”, Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189–197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6–2 µm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 °C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-γ-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

2.
The bioluminescence system in the "firefly squid," Watasenia scintillans, is described. The light-emitting components consist of luciferin (coelenterazine disulfate), a membrane-bound luciferase, ATP, Mg2+, and molecular oxygen. A hypothetical scheme is proposed for the light-emitting reaction.  相似文献   

3.
The small Japanese "firefly squid," Watasenia scintillans, emits a bluish luminescence from dermal photogenic organs distributed along the ventral aspects of the head, mantle, funnel, arms and eyes. The brightest light is emitted by a cluster of three tiny organs located at the tip of each of the fourth pair of arms. Studies of extracts of the arm organs show that the light is due to a luciferin-luciferase reaction in which the luciferase is membrane-bound. The other components of the reaction are coelenterazine disulfate (luciferin), ATP, Mg(2+), and molecular oxygen. Based on the results, a reaction scheme is proposed which involves a rapid base/luciferase-catalyzed enolization of the keto group of the C-3 carbon of luciferin, followed by an adenylation of the enol group by ATP. The AMP serves as a recognition moiety for docking the substrate molecule to a luciferase bound to membrane, after which AMP is cleaved and a four-membered dioxetanone intermediate is formed by the addition of molecular oxygen. The intermediate then spontaneously decomposes to yield CO(2) and coelenteramide disulfate (oxyluciferin) in the excited state, which serves as the light emitter in the reaction.  相似文献   

4.
The small Japanese “firefly squid,” Watasenia scintillans, emits a bluish luminescence from dermal photogenic organs distributed along the ventral aspects of the head, mantle, funnel, arms and eyes. The brightest light is emitted by a cluster of three tiny organs located at the tip of each of the fourth pair of arms. Studies of extracts of the arm organs show that the light is due to a luciferin-luciferase reaction in which the luciferase is membrane-bound. The other components of the reaction are coelenterazine disulfate (luciferin), ATP, Mg2+, and molecular oxygen. Based on the results, a reaction scheme is proposed which involves a rapid base/luciferase-catalyzed enolization of the keto group of the C-3 carbon of luciferin, followed by an adenylation of the enol group by ATP. The AMP serves as a recognition moiety for docking the substrate molecule to a luciferase bound to membrane, after which AMP is cleaved and a four-membered dioxetanone intermediate is formed by the addition of molecular oxygen. The intermediate then spontaneously decomposes to yield CO2 and coelenteramide disulfate (oxyluciferin) in the excited state, which serves as the light emitter in the reaction.  相似文献   

5.
Inouye S  Sasaki S 《FEBS letters》2006,580(8):1977-1982
Blue fluorescent protein from the calcium-binding photoprotein aequorin (BFP-aq) is a complex of Ca2+ -bound apoaequorin and coelenteramide, and shows luminescence activity like a luciferase, catalyzing the oxidation of coelenterazine with molecular oxygen. To understand the catalytic properties of BFP-aq, various fluorescent proteins (FP-aq) have been prepared from semi-synthetic aequorin and characterized in comparison with BFP-aq. FP-aq has luciferase activity and could be regenerated into native aequorin by incubation with coelenterazine. The results from substrate specificity studies of FP-aq using various coelenterazine analogues have suggested that the oxidation of coelenterazine by BFP-aq in the luciferase reaction and the regeneration process to aequorin might involve the same catalytic site of BFP-aq.  相似文献   

6.
The arm light organ of the firefly squid, Watasenia scintillans, emits extremely bright flashes of light, which are caused by a luciferin-luciferase reaction involving ATP, Mg(2+) and molecular oxygen. The molecular mechanism underlying the bioluminescence reaction has remained unresolved, because the luciferase could not be identified or isolated. The arm light organ contains numerous rod-like bodies that are 2-6 μm long and 1-2 μm thick. This paper addresses the characterization of the extracted rod-like body. We found that the rod-like bodies emit the light in vitro by the luciferin-luciferase reaction. Furthermore, by using the X-ray powder diffraction method, we confirmed that the rod-like bodies are well-ordered microcrystals.  相似文献   

7.
While it has been reported that general anaesthetics inhibit the enzyme luciferase and thus reduce the light output of the reaction with luciferin, we find that in squid giant axons injected with luciferin and luciferase, treatment with experimental general anaesthetics at concentrations sufficient to block axonal conduction leads to an increase in the light production by the reaction. This potentiation of the protein activity is best observed when luciferin concentration is above the apparent association constant. Our findings raise doubts regarding the suitability of luciferase as a model for the target region of general anesthetic action.  相似文献   

8.
Bioluminescence of the medusa Periphylla is based on the oxidation of coelenterazine catalyzed by luciferase. Periphylla has two types of luciferase: the soluble form luciferase L, which causes the exumbrellar bioluminescence display of the medusa, and the insoluble aggregated form, which is stored as particulate material in the ovary, in an amount over 100 times that of luciferase L. The eggs are especially rich in the insoluble luciferase, which drastically decreases upon fertilization. The insoluble form could be solubilized by 2-mercaptoethanol, yielding a mixture of luciferase oligomers with molecular masses in multiples of approximately 20 kDa. Those having the molecular masses of 20 kDa, 40 kDa, and 80 kDa were isolated and designated, respectively, as luciferase A, luciferase B, and luciferase C. The luminescence activities of Periphylla luciferases A, B, and C were 1.2 approximately 4.1 x 10(16) photon/mg. s, significantly higher than any coelenterazine luciferase known, and the quantum yields of coelenterazine catalyzed by these luciferases (about 0.30 at 24 degrees C) are comparable to that catalyzed by Oplophorus luciferase (0.34 at 22 degrees C), which has been considered the most efficient coelenterazine luciferase until now. Luciferase L (32 kDa) could also be split by 2-mercaptoethanol into luciferase A and an accessory protein (approx. 12 kDa), as yet uncharacterized. Luciferases A, B, and C are highly resistant to inactivation: their luminescence activities are only slightly diminished at pH 1 and pH 11 and are enhanced in the presence of 1 approximately 2 M guanidine hydrochloride; but they are less stable to heating than luciferase L, which is practically unaffected by boiling.  相似文献   

9.
1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant.  相似文献   

10.
The Ca2+-triggered luciferin-binding protein of Renilla reniformis (RLBP) is a non-covalent complex of apoprotein (apoRLBP) and coelenterazine (luciferin). The gene encoding apoRLBP with 552 nucleotides has been synthesized by assembly PCR methods with synthetic oligonucleotides, and the histidine-tagged apoRLBP expressed as a soluble form in the periplasmic space of Escherichia coli cells. The apoRLBP was purified by nickel chelate chromatography and the procedure yielded 18.2mg of recombinant apoRLBP from 80 ml of cultured cells with purity greater than 95%. The purified apoRLBP was converted to RLBP by incubation with coelenterazine in the presence of dithiothreitol and the purity of recombinant RLBP was estimated to be over 95% by comparison with the absorption spectral data of native RLBP. When RLBP mixed with Ca2+, coelenterazine was dissociated from RLBP and was utilized for the luminescence reaction of Renilla luciferase. Also semi-synthetic RLBPs with h-, e-, and Bis-coelenterazines were prepared and characterized.  相似文献   

11.
The bioluminescent squid, Watasenia scintillans has three visual pigments. The major pigment, based on retinal (lambda max 484 nm), is distributed over the whole retina. Another pigment based on 3-dehydroretinal (lambda max approximately 500 nm) and the third pigment (lambda max approximately 470 nm) are localized in the specific area of the ventral retina just receiving the downwelling light. Visual pigment was extracted and purified from the dissected retina. The chromophores were then extracted and analyzed with HPLC, NMR, infrared and mass spectroscopy, being compared with the synthetic 4-hydroxyretinal. A new retinal derivative, 11-cis-4-hydroxyretinal, is identified as the chromophore of the third visual pigment of the squid.  相似文献   

12.
Gaussia luciferase secreted by the copepod Gaussia princeps catalyzes the oxidation of coelenterazine to produce blue light. The primary structure of Gaussia luciferase deduced from the cDNA sequence shows two repeat sequences of 71 amino acid residues, suggesting the luciferase consists of two structural domains. Two domains in Gaussia luciferase were expressed independently in Escherichia coli cells, purified and characterized. We found that both domains have luminescence activity with coelenterazine, and the catalytic properties including luminescence spectrum, optimal pH, substrate specificity and luminescence stimulation by halogen ions (Cl, Br and I) are identical to intact Gaussia luciferase. Thus, Gaussia luciferase has two catalytic domains for the luminescence reaction.  相似文献   

13.
The photoprotein aequorin isolated from the jellyfish Aequorea emits blue light in the presence of Ca2+ by an intramolecular process that involves chemical transformation of the coelenterazine moiety into coelenteramide and CO2. Because of its high sensitivity to Ca2+, aequorin has widely been used as a Ca2+ indicator in various biological systems. We have replaced the coelenterazine moiety in the protein with several synthetic coelenterazine analogues, providing semi-synthetic Ca2+-sensitive photoproteins. One of the semi-synthetic photoproteins, derived from coelenterazine analogue (II) (with an extra ethano group), showed highly promising properties for the measurement of Ca2+, namely (1) the rise time of luminescence in response to Ca2+ was shortened by approx. 4-fold compared with native aequorin and (2) the luminescence spectrum showed two peaks at 405 nm and 465 nm and the ratio of their peak heights was dependent on Ca2+ concentration in the range of pCa 5-7, thus allowing the determination of [Ca2+] directly from the ratio of two peak intensities. Coelenterazine analogue (I) (with a hydroxy group replaced by an amino group) was also incorporated into apo-aequorin, yielding a Ca2+-sensitive photoprotein, which indicates that an electrostatic interaction between the phenolate group in the coelenterazine moiety and some cationic centre in apo-aequorin is not important in native aequorin, contrary to a previous suggestion.  相似文献   

14.
Suzuki T  Usuda S  Ichinose H  Inouye S 《FEBS letters》2007,581(24):4551-4556
Using photon counting and charge-coupled device (CCD) cameras, we have applied the method of real-time bioluminescence imaging to investigate protein trafficking in mammalian cells. In the living cells of Chinese hamster ovary and PC12D cells, exocytotic secretion of protein and protein targeting on the cell surface were visualized using the secreted Gaussia luciferase (GLase) as a reporter protein in a minute. After incubation of the cells with luciferin (coelenterazine) for 10min, luciferin was imported into the cells and the vesicle transport network in the cells could be shown by luminescence images of GLase activity. Further, we demonstrate that GLase with a heterologous signal peptide sequence is targeted to the cell surface in neuronally differentiated PC12D cells and luminescence signals could be detected in a few seconds.  相似文献   

15.
Inouye S 《FEBS letters》2004,577(1-2):105-110
Blue fluorescent protein from the calcium-sensitive photoprotein aequorin (BFP-aq) was prepared and determined to be a heat resistant enzyme, catalyzing the luminescent oxidation of coelenterazine (luciferin) with molecular oxygen as a general luciferase. After treatment with excess ethylenediaminetetraacetic acid to remove Ca2+ from BFP-aq, the blue fluorescence shifted to a greenish fluorescence. This greenish fluorescent protein (gFP-aq) was identified as a non-covalent complex of apoaequorin with coelenteramide (oxyluciferin) in a molar ratio of 1:1. By incubation with coelenterazine in the absence of reducing reagents, gFP-aq was converted to aequorin at 25 degrees C. BFP-aq and gFP-aq possessing both fluorescence and luminescence activities may work as novel reporter proteins.  相似文献   

16.
Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin.  相似文献   

17.
The contents of firefly luciferin in luminous and non-luminous beetles were determined by the methods of HPLC with fluorescence detection and the luminescence reaction of luciferin and firefly luciferase. Luminous cantharoids and elaterids contained various amounts of luciferin in the range of pmol to hundreds of nmol, but no luciferin was detected in the non-luminous cantharoids and elaterids.  相似文献   

18.
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 Å and demonstrate a classic α/β-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.  相似文献   

19.
The contents of firefly luciferin in luminous and non-luminous beetles were determined by the methods of HPLC with fluorescence detection and the luminescence reaction of luciferin and firefly luciferase. Luminous cantharoids and elaterids contained various amounts of luciferin in the range of pmol to hundreds of nmol, but no luciferin was detected in the non-luminous cantharoids and elaterids.  相似文献   

20.
The luciferase preparation obtained from fireflies Luciola mingrelica has entrapped into the human erythrocytes by means of reversible osmotic lysis. The addition of luciferin to such erythrocytes leads to the appearance of luminescence, conditioned by the entrance of luciferin into the cells. Luciferin is uniformly distributed between cells and external medium. Luciferin transport through the erythrocyte membrane is a result of simple diffusion. Values of rate constant of luciferin transport through the membrane lie between 0.009-0.021 l/s 1 cells for erythrocytes of different donors. The maximum luminescence intensity increases monotonously with rise of temperature and luciferin concentration. The dependence of the maximum luminescence intensity on luciferin concentration is described by Michaelis kinetics. Obtained in different experiments, values of luciferase Michaelis constant for luciferin inside erythrocytes lie between 4.1-21.5 microM. Luminescence intensity of the luciferase containing erythrocytes depends on the intracellular ATP concentration. Under the same luciferin concentration the correlation of luminescence intensities of control erythrocytes with normal ATP level and erythrocytes depleted without glucose is near to correlation of their ATP concentrations. After the addition of glucose to the depleted erythrocytes their ATP concentration rises and luminescence intensity approaches to the level of control erythrocytes. Luciferase entrapment permit one to control rapid ATP concentration changes in the erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号