首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder. Accumulation and deposition of the beta-amyloid (Aβ) peptide generated from its larger amyloid precursor protein (APP) is one of the pathophysiological hallmarks of AD. Intracellular cholesterol was shown to regulate Aβ production. Recent genetic and biochemical studies indicate that not only the amount, but also the distribution of intracellular cholesterol is critical to regulate Aβ generation. Acyl-coenzyme A: cholesterol acyl-transferase (ACAT) is a family of enzymes that regulates the cellular distribution of cholesterol by converting membrane cholesterol into hydrophobic cholesteryl esters for cholesterol storage and transport. Using pharmacological inhibitors and transgenic animal models, we and others have identified ACAT1 as a potential therapeutic target to lower Aβ generation and accumulation. Here we discuss data focusing on ACAT inhibition as an effective strategy for the prevention and treatment of AD.  相似文献   

2.
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-β (Aβ) peptide aggregates in the brain of affected individuals. Aβ is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, β- and γ-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP.  相似文献   

3.
4.
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.  相似文献   

5.
γ-Secretase is composed of at least four transmembrane proteins, presenilin (PS) 1/2, nicastrin, anterior pharynx-1 (Aph-1) and presenilin enhancer-2 (Pen-2), and cleaves amyloid precursor protein (APP) to produce amyloid β peptides (Aβ) that is deposited in the brains of Alzheimer disease. However, the mechanism of γ-secretase-mediated cleavage remains unclear. To examine the enzymatic properties of γ-secretase, we established an in vitro assay system using Saccharomyces cerevisiae, which does not possess homologs of human PS1/2, nicastrin, Aph-1, or Pen-2. We transformed these subunits and the substrate in pep4Δ cells with vacuole proteases inactivated, and microsome was isolated for in vitro assay. In the assay, Aβ40, Aβ42, and Aβ43 were produced with an optimal pH of ∼7.0. We also detected Aβ-production by yeast endogenous protease(s), which was abolished by the addition of phosphatidyl choline. This novel system will facilitate the analysis of substrate recognition by γ-secretase.  相似文献   

6.
The public health burden of metabolic syndrome (MetS), a multiplex risk factor that arises from insulin resistance accompanying abnormal adipose conditions, and Alzheimer's disease (AD), the most common form of dementia, continues to expand. Current available therapies for these disorders are of limited effectiveness. Recent findings have indicated that alternations in sphingolipid metabolism contribute to the development of these pathologies. Sphingolipids are major constituents of the plasma membrane, where they are known to form several types of microdomains, and are potent regulators for a variety of physiological processes. Many groups, including ours, have demonstrated that membrane sphingolipids, especially ceramide and its metabolites such as ceramide 1-phosphate, have roles in arteriosclerosis, obesity, diabetes, and inflammation associated with MetS. Aberrant sphingolipid profiles have been observed in human AD brains, and accumulated evidence has demonstrated that changes in membrane properties induced by defective sphingolipid metabolism impair generation and degradation of amyloid-β peptide (Aβ), a pathogenic agent of AD. In this review, we summarize current knowledge and pathophysiological implications of the roles of SLs in MetS and AD, to provide insight into the SL metabolic pathways as potential targets for therapy of these diseases. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

7.
Alzheimer's disease is characterized by the deposition of amyloid beta-peptide (Abeta) plaques in the brain. Full-length amyloid-beta precursor protein (APP) is processed by alpha- and beta-secretases to yield soluble APP derivatives and membrane-bound C-terminal fragments, which are further processed by gamma-secretase to a non-amyloidogenic 3 kDa product or to Abeta fragments. As different Abeta fragments contain different parts of the APP transmembrane helix, one may speculate that they are retained more or less efficiently in the membrane. Here, we use the translocon-mediated insertion of different APP-derived polypeptide segments into the endoplasmic reticulum membrane to assess the propensities for membrane retention of Abeta fragments. Our results show a strong correlation between the length of an Abeta-derived segment and its ability to integrate into the microsomal membrane.  相似文献   

8.
The current review focuses upon recent advances concerning the interrelationship between the ER and the trans-Golgi network (ER-TGN), the ER and the nucleus (ER-nucleus), and the ER-ubiquitin-proteasomal pathways at the level of basic cell biology. The overall emphasis of this paper centers upon the high likelihood that measurements of ER-associated protein or gene expression levels are not representative of a strict ER alone phenotype. Rather, that ER phenotype reflects a synthesis of phenotypes derived from intracellular compartments and phosphorylated messengers in rapport with the ER. The ER-TGN, ER-nuclear, and ER-ubiquitin-proteasomal transit paths share the ability to feed into the decision of whether TGN vesicles can interact with specific phosphorylated residues in order to drive physiologic, constitutive, anterograde traffic, retrograde traffic, and degradation. TGN vesicles can: (a) traffic to endosomes versus plasma membrane phosphodomains depending upon the presence or the absence of select Golgi-localized gamma-ear containing ADP ribosylation factor-binding proteins and/or protein kinase D; (b) be maintained within the TGN in the presence of a phosphosorting acidic cluster motif adaptor; (c) transit back to the ER via specialized TGN/ER glycosyltransferases (which modulate phosphorylated proteins); (d) transit to the nucleus via phosphatidylinositol-4-kinase-associated phosphodomains; and/or (e) retrotranslocate to the ubiquitin-proteasome pathway, which is equipped with E3 ligase potential, in order to further regulate endosomal versus plasma membrane traffic. The TGN is also a critical gateway for protein transit in the sense that, as a function of sorting within this compartment, proteins are sent to the axon, cell body, or dendrites. As the decision to sort to the axon versus the somatodendritic compartment is intimately tied to TGN function, future understanding of TGN biology at the levels of neurogenesis and protein sorting is predicted to also effectively increase our understanding of synaptic sorting/regulation.  相似文献   

9.
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.  相似文献   

10.
Membrane microdomains are implicated in the trafficking and sorting of several membrane proteins. In particular GPI-anchored proteins cluster into Triton X-100 resistant, cholesterol- and sphingolipid-rich membrane microdomains and are sorted to the apical membrane. A growing body of evidence has pointed to the existence of other types of microdomains that are insoluble in detergents, such as Lubrol WX and Tween-20. Here, we report on the role of detergent-resistant membranes formed at early stages in the biosynthesis of membrane dipeptidase (MDP), a GPI-anchored protein, on its trafficking and sorting. Pulse-chase experiments revealed a retarded maturation rate of the GPI-anchor deficient mutant (MDPΔGPI) as compared to the wild type protein (wtMDP). However, Golgi to cell surface delivery rate did not show a significant difference between the two variants. On the other hand, early biosynthetic forms of wtMDP were partially insoluble in Tween-20, while MDPΔGPI was completely soluble. The lack of association of MDPΔGPI with detergent-resistant membranes prior to maturation in the Golgi and the reduction in its trafficking rate strongly suggest the existence of an early trafficking control mechanisms for membrane proteins operating at a level between the endoplasmic reticulum and the cis-Golgi.  相似文献   

11.
Dai XL  Sun YX  Jiang ZF 《FEBS letters》2007,581(7):1269-1274
Amyloid-beta peptide (Abeta), the major constituent of senile plaques in the Alzheimer's disease (AD) brain, is the main source of oxidative stress leading to neurodegeneration. The methionine residue in this peptide is reported to be responsible for neurotoxicity. Structurally similar substitution with methionine 35 replaced by cysteine in Abeta(40) was synthesized, and this result in enhanced beta-sheet structures according to both circular dichroism (CD) spectra and beta-fibril specific fluorescence assay but attenuated cytotoxicity whether in the presence of copper or not. These findings may provide further evidence on disclosing the connection between amyloid beta-aggregation and Abeta-induced neurotoxicity.  相似文献   

12.
Uemura T  Sato MH  Takeyasu K 《FEBS letters》2005,579(13):2842-2846
SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors) which locate on the specific organelle membrane assure the correct vesicular transport by mediating specific membrane fusions. SNAREs are referred to as R- or Q-SNAREs on the basis of the amino acid sequence similarities and specific conserved residues. All of the Arabidopsis R-SNAREs have a N-terminal domain, called the longin domain (LD). In this study, we investigated the vacuolar targeting mechanism of Arabidopsis R-SNAREs. The vacuolar localized AtVAMP711 was used as the mother protein of GFP-tagged chimeric proteins joined to several domains such as the LD, the SNARE motif (SNM) and the transmembrane domain (TMD) of other organelle-localized R-SNAREs. The results showed that, whereas the TMD is not relevant for the vacuolar targeting, a complete LD is essential for the vacuolar and subcellular targeting.  相似文献   

13.
Amyloid-β peptide (Aβ) is considered a triggering agent of Alzheimer's disease. In relation to a therapeutic treatment of the disease, the interaction of Aβ with the cell membrane has to be elucidated at the molecular level to understand its mechanism of action. In previous works, we had ascertained by neutron diffraction on stacked lipid multilayers that a toxic fragment of Aβ is able to penetrate and perturb the lipid bilayer. Here, the influence of Aβ(1-42), the most abundant Aβ form in senile plaques, on unilamellar lipid vesicles of phospholipids is investigated by small-angle neutron scattering. We have used the recently proposed separated form factor method to fit the data and to obtain information about the vesicle diameter and structure of the lipid bilayer and its change upon peptide administration. The lipid membrane parameters were obtained with different models of the bilayer profile. As a result, we obtained an increase in the vesicle radii, indicating vesicle fusion. This effect was particularly enhanced at pH 7.0 and at a high peptide/lipid ratio. At the same time, a thinning of the lipid bilayer occurred. A fusogenic activity of the peptide may have very important consequences and may contribute to cytotoxicity by destabilizing the cell membrane. The perturbation of the bilayer structure suggests a strong interaction and/or insertion of the peptide into the membrane, although its localization remains beyond the limit of the experimental resolution.  相似文献   

14.
Accumulated amyloid-β (Aβ) is a well-known cause of neuronal apoptosis in Alzheimer disease and functions in part by generating oxidative stress. Our previous work suggested that cyclophilin B (CypB) protects against endoplasmic reticulum (ER) stress. Therefore, in this study we examined the ability of CypB to protect against Aβ toxicity. CypB is present in the neurons of rat and mouse brains, and treating neural cells with Aβ25-35 mediates apoptotic cell death. Aβ25-35-induced neuronal toxicity was inhibited by the overexpression of CypB as measured by cell viability, apoptotic morphology, sub-G1 cell population, intracellular reactive oxygen species accumulation, activated caspase-3, PARP cleavage, Bcl-2 proteins, mitogen-activated protein kinase (MAPK) activation, and phosphoinositide 3-kinase (PI-3-K) activation. CypB/R95A PPIase mutants did not reduce Aβ25-35 toxicity. We showed that Aβ25-35-induced apoptosis is more severe in a CypB knockdown model, confirming that CypB protects against Aβ25-35-induced toxicity. Consequently, these findings suggest that CypB may protect against Aβ toxicity by its antioxidant properties, by regulating MAPK and PI-3-K signaling, and through the ER stress pathway.  相似文献   

15.
Presenilin is the catalytic component of the γ-secretase complex, a membrane-embedded aspartyl protease that plays a central role in biology and in the pathogenesis of Alzheimer’s disease. Upon assembly with its three protein cofactors (nicastrin, Aph-1 and Pen-2), presenilin undergoes autoproteolysis into two subunits, each of which contributes one of the catalytic aspartates to the active site. A family of presenilin homologs, including signal peptide peptidase, possess proteolytic activity without the need for other protein factors, and these simpler intramembane aspartyl proteases have given insight into the action of presenilin within the γ-secretase complex. Cellular and molecular studies support a nine-transmembrane topology for presenilins and their homologs, and small-molecule inhibitors and cysteine scanning with crosslinking have suggested certain presenilin residues and regions that contribute to substrate recognition and handling. Identification of partial complexes has also offered clues to protein–protein interactions within the γ-secretase complex. Biophysical methods have allowed 3D views of the γ-secretase complex and presenilins. Most recently, the crystal structure of a microbial presenilin homolog has confirmed a nine-transmembrane topology and intramembranous location and proximity of the two conserved and essential aspartates. The crystal structure also provides a platform for the formulation of specific hypotheses regarding substrate interaction and catalysis as well as the pathogenic mechanism of Alzheimer-causing presenilin mutations. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   

16.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

17.
Cu-transporting ATPase ATP7B (Wilson disease protein) is essential for the maintenance of intracellular copper concentration. In hepatocytes, ATP7B is required for copper excretion, which is thought to occur via a transient delivery of the ATP7B- and copper-containing vesicles to the apical membrane. The currently available experimental systems do not allow analysis of ATP7B at the cell surface. Using epitope insertion, we identified an extracellular loop into which the HA-epitope can be introduced without inhibiting ATP7B activity. The HA-tagged ATP7B was expressed in Xenopus oocytes and the presence of ATP7B at the plasma membrane was demonstrated by electron microscopy, freeze-fracture experiments, and surface luminescence measurements in intact cells. Neither the deletion of the entire N-terminal copper-binding domain nor the inactivating mutation of catalytic Asp1027 affected delivery to the plasma membrane of oocytes. In contrast, surface targeting was decreased for the ATP7B variants with mutations in the ATP-binding site or the intra-membrane copper-binding site, suggesting that ligand-stabilized conformation(s) are important for ATP7B trafficking. The developed system provides significant advantages for studies that require access to both sides of ATP7B in the membrane.  相似文献   

18.
Nziengui H  Bouhidel K  Pillon D  Der C  Marty F  Schoefs B 《FEBS letters》2007,581(18):3356-3362
Reticulons are proteins that have been found predominantly associated with the endoplasmic reticulum in yeast and mammalian cells. While their functions are still poorly understood, recent findings suggest that they participate in the shaping of the tubular endoplamic reticulum (ER). Although reticulon-like proteins have been identified in plants, very little is known about their cellular localization and functions. Here, we characterized the reticulon-like protein family of Arabidopsis thaliana. Three subfamilies can be distinguished on the basis of structural organization and sequence homology. We investigated the subcellular localization of two members of the largest subfamily, i.e. AtRTNLB2 and AtRTNLB4, using fluorescent protein tags. The results demonstrate for the first time that plant reticulon-like proteins are associated with the ER. Both AtRTNLB proteins are located in the tubular ER but AtRTNLB4 is also found in the lamellar ER cisternae, and in ER tubules in close association with the chloroplasts. Similarity in protein structure and subcellular localization between AtRTNLB2 and mammalian reticulons suggests that they could assume similar basic functions inside the cell.  相似文献   

19.
γ-Secretase, an integral membrane protein complex, catalyzes the intramembrane cleavage of the β-amyloid precursor protein (APP) during the neuronal production of the amyloid β-peptide. As such, the protease has emerged as a key target for developing agents to treat and prevent Alzheimer's disease. Existing biochemical studies conflict on the oligomeric assembly state of the protease complex, and its detailed structure is not known. Here, we report that purified active human γ-secretase in digitonin has a total molecular mass of ∼ 230 kDa when measured by scanning transmission electron microscopy. This result supports a complex that is monomeric for each of the four component proteins. We further report the three-dimensional structure of the γ-secretase complex at 12 Å resolution as obtained by cryoelectron microscopy and single-particle image reconstruction. The structure reveals several domains on the extracellular side, three solvent-accessible low-density cavities, and a potential substrate-binding surface groove in the transmembrane region of the complex.  相似文献   

20.
The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation   总被引:1,自引:0,他引:1  
Inhibition of double-stranded RNA-dependent protein kinase (PKR) represents an interesting strategy for neuroprotection. However, inhibiting this kinase which triggers the apoptotic process could favour in counterpart cell proliferation and tumorigenesis. Here, we use an in vivo model of 7-day-old rat displaying a high activation of brain PKR to investigate the effects of a new PKR inhibitor identified as an oxindole/imidazole derivative (C16). We show for the first time that acute systemic injection of C16 specifically inhibits the apoptotic PKR/eIF2alpha signaling pathway without stimulating the proliferative mTOR/p70S6K signaling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号