首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine extremely thermophilic archaea and one novel thermophilic bacterium were screened for their ability to produce amylolytic and pullulytic enzymes. Cultivation of these micro-organisms was performed in the absence of elemental sulphur with starch as the major carbon source. Enzymatic activity was mainly detected in two archaea belonging to the order Thermoproteales,Desulfurococcus mucosus andStaphylothermus marinus, in two archaea belonging to the order Thermococcales,Thermococcus celer andT. litoralis and in two novel archaeal strains, TYS and TY previously isolated from the Guaymas Basin in the Gulf of California. Both amylolytic and pullulytic activities were also detected in a newly isolated thermophilic bacterium belonging to the order Thermotogales and previously described asFervidobacterium pennavorans. Best yields for enzyme production were obtained in 1–1 batch cultures with the strains TYS (13 units U/1 of amylase, 6 U/1 of pullulanase),F. pennavorans (2.5 U/l of amylase, 4.5 U/l of pullulanase) andT. litoralis (3.0 U/l of amylase). Enzymes were in general characterized by temperature optima around 90–100°C, pH optima around 5.5–6.5 and a high degree of thermostability. Due to the remarkable properties of these enzymes, they are of interest for biotechnological applications.  相似文献   

2.
Enzyme production in a cell recycle fermentation system was studied by computer simulations, using a mathematical model of -amylase production by Bacillus amyloliquefaciens. The model was modified so as to enable simulation of enzyme production by hypothetical organisms having different production kinetics at different fermentation conditions important for growth and production. The simulations were designed as a two-level factorial assay, the factor studied being fermentation with or without cell recycling, repression of product synthesis by glucose, kinetic production constants, product degradation by a protease, mode of fermentation, and starch versus glucose as the substrate carbon source.The main factor of importance for ensuring high enzyme production was cell recycling. Product formation kinetics related to the stationary growth phase combined with continuous fermentation with cell recycling also had a positive impact. The effect was greatest when two or more of these three factors were present in combinations, none of them alone guaranteeing a good result. Product degradation by a protease decreased the amount of product obtained; however, when combined with cell recycling, the protease effect was overshadowed by the increased production. Simulation of this type should prove a useful tool for analyzing troublesome fermentations and for identifying production organisms for further study in integrated fermentation systems.List of Symbols a proportionality constant relating the specific growth rate to the logarithm of G (h) - a 1 reaction order with respect to starch concentration - a 2 reaction order with respect to glucose concentration - c starch concentration (g/l) - c 0 starch concentration in the feed (g/l) - D dilution rate (h–1) - e intrinsic intracellular amylase concentration (g product/g cell mass) - E extracellular amylase concentration (g/l) - F volumetric flow rate (l/h) - G average number of genome equivalents of DNA/cell - K 1 intracellular repression constant - K 2 intracellular repression constant - K s Monod saturation constant (g/l) - k 3 product excretion rate constant (h–1) - k I translation constant (g product/g mRNA/h) - k d first order decay constant (h–1) - k dw first order decay constant (h–1) - k gl rate constant for glucose production (g/l/h) - k m, dgr saturation constant for product degradation (g/l) - k st rate constant for starch hydrolysis (g/l/h) - k t1 proportionality constant for amylase production (g mRNA/g substrate) - k t2 proportionality constant for amylase production (g mRNA *h/g substrate) - k w protease excretion rate constant (h–1) - k wt1 proportionality constant for protease production (g mRNA/g substrate) - k wt2 proportionality constant for protease production (g mRNA *h/g substrate) - k wI translation constant (g protease/g mRNA/h) - m maintenance coefficient (g substrate/g cell mass/h) - n number of binding sites for the co-repressor on the cytoplasmic repressor - Q repression function, K1/K2 less than or equal to 1.0 - Q w repression function, K1/K2 less than or equal to 1.0 - r intrinsic amylase mRNA concentration (g mRNA/g cell mass) - r m intrinsic protease mRNA concentration (g mRNA/g cell mass) - R ex retention by the filter of the compounds x=: C starch, E amylase, or S glucose - R t amylase transport rate (g product/g cell mass/h) - R wt protease transport rate (g protease/g cell mass/h) - R s rate of glucose production (g/l/h) - R c rate of starch hydrolysis (g/l/h) - S 0 feed concentration of free reducing sugar (g/l) - s extracellular concentration of reducing sugar (g/l) - t time (h) - V volume (1) - w intracellular protease concentration (g/l) - W extracellular protease concentration (g/l) - X cell mass concentration (dry weight) (g/l) - Y yield coefficient (g cell mass/g substrate) - substrate uptake (g substrate/g cell mass/h) - specific growth rate of cell mass (h–1) - d specific death rate of cells (h–1) - m maximum specific growth rate of cell mass (h–1) - m,dgr maximum specific rate of amylase degradation (h–1) This study was supported by the Nordic Industrial Foundation Bioprocess Engineering Programme and the Center for Process Biotechnology, The Technical University of Denmark.  相似文献   

3.
The kinetics of amylolytic enzyme formation by a yeast cell wall lytic Arthrobacter species were studied. Cultivation on autoclaved cells of baker's yeast showed that amylase formation was closely related to trehalose and glycogen dissimilation. Growth on yeast glycogen (0.5%) proceeded quite rapidly ( = 0.31 h–1) with extensive amylase formation during exponential cell multiplication and a further low increase in activity during the stationary phase. Beside amylolytic activity [450 units (U) l–1] the formation of a relatively high level of -glucosidase (90 U l–1) was detected, the latter almost exclusively bound to bacterial cells. Growth on 0.5% trehalose occurred at a reduced rate ( = 0.22 h–1) with post-logarithmic enzyme synthesis in the stationary phase. Amylase activity attained a level of 1200 U l–1, whereas -glucosidase was very low at 7.7 U l–1. Continuous culture experiments in the chemostat showed maximal volumetric productivity of amylase (105 U l–1 h–1) at a dilution rate of 0.15 h–1. Growth on various carbohydrates revealed low levels of amylolytic activity (<100 U l–1), which were increased by a -1,4-glucans and oligosaccharides such as starch, dextrin, maltotriose and maltose. On 0.5% maltose, growth-associated enzyme synthesis (230 U l–1) was detected at a reduced growth rate ( = 0.14 h–1). Amylolytic enzyme preparations from the culture fluid showed an unusual cleavage pattern; acting on starch, the polymer was almost completely hydrolysed to maltotriose and maltose in a molar ratio of 3:1.Correspondence to: W. A. Hampel  相似文献   

4.
Summary Extracellular -N-acetylhexosaminidase in basic specific activity 1.5 U/mg protein was induced 15 – 35 times (up to 50 U/mg protein) by mixture of chitooligomers (crude chitin hydrolysate), 10 – 20 times (20 – 30 U/mg protein) by N-acetylglucosamine, and 10 times (14 U/mg protein) by chitosan in Aspergillus oryzae. Addition of NaCl (15 – 23 g/l) to the cultivation medium enhanced the induction in 10 – 20 %.  相似文献   

5.
R. De Frutos  A. Latorre 《Genetica》1982,58(3):177-188
A study of the puffing patterns of the Jst, J1, U1–2, U1–2–8 and Ust chromosomal arrangements of Drosophila subobscura, from different geographical origins, has been carried out. Twenty-eight puffs were observed, 10 on the J chromosome, and 18 on the U chromosome. No differences, whether qualitative or quantitative, have been found between the puffing pattern of the J chromosome, whether from the same of different geographical background. In the U chromosome, the U1–2 and U1+2+8 arrangements show the same puffing pattern, and neither quantitative nor qualitative differences were found. However, the puffing pattern of these chromosomes alters considerably in the Ust arrangement of the K228 laboratory strain.  相似文献   

6.
Chitin deacetylase (CDA) is an enzyme that catalyzes the hydrolysis of acetamine groups of N-acetyl-d-glucosamine in chitin, converting it to chitosan in fungal cell walls. In the present study, the activity in batch culture of CDA from six Mucoralean strains, two of them wild type, isolated from dung of herbivores of Northeast Brazil, was screened. Among the strains tested, Cunninghamella bertholletiae IFM 46114 showed a high intracellular enzyme activity of 0.075 U/mg protein after 5 days of culture, and a wild-type strain of Mucor circinelloides showed a high intracellular enzyme activity of 0.060 U/mg protein, with only 2 days of culture, using N-acetylchitopentaose as substrate. This enzyme showed optimal activity at pH 4.5 in 25 mM glutamate-sodium buffer at 50°C, and was stable over 1 h preincubation at the same temperature. The kinetic parameters of CDA did not follow Michaelis-Menten kinetics, but rather Hill affinity distribution, showing probable allosteric behavior. The apparent KHILL and Vmax of CDA were 288±34 nmol/l and 0.08±0.01 U mg protein–1 min–1, respectively, using N-acetylchitopentaose as substrate at pH 4.5 at 50°C.  相似文献   

7.
To produce glucoamylase efficiently as a recombinant protein, E. coli was grown with 20 g (NH4)2SO4 l–1 which removed proteolytic activity but did not effect cell growth. Growth in M9 medium with 20 g (NH4)2SO4 l–1 produced 11 U glucoamylase ml–1 compared to 7 U ml–1 without addition. Furthermore, the glucoamylase activity was maintained at about 9 U ml–1.  相似文献   

8.
Short-term (up to 5 h) transfers of shade-adapted (100 mol · m–2 · s–1) clonal tissue of the marine macroalga Ulva rotundata Blid. (Chlorophyta) to higher irradiances (1700, 850, and 350 mol · m–2 · s–1) led to photoinhibition of room-temperature chlorophyll fluorescence and O2 evolution. The ratio of variable to maximum (Fv/Fm) and variable (Fv) fluorescence, and quantum yield () declined with increasing irradiance and duration of exposure. This decline could be resolved into two components, consistent with the separation of photoinhibition into energy-dissipative processes (photoprotection) and damage to photosystem II (PSII) by excess excitation. The first component, a rapid decrease in Fv/Fm and in Fv, corresponds to an increase in initial (Fo) fluorescence and is highly sensitive to 1 mM chloramphenicol. This component is rapidly reversible under dim (40 mol · m–2 · s–1) light, but is less reversible with increasing duration of exposure, and may reflect damage to PSII. The second (after 1 h exposure) component, a slower decline in Fv/Fm and Fv with declining Fo, appears to be associated with the photoprotective interconversion of violaxanthin to zeaxanthin and is sensitive to dithiothreitol. The accumulation of zeaxanthin in U. rotundata is very slow, and may account for the predominance of increases in Fo at high irradiances.Abbreviations and Symbols CAP chloramphenicol - DTT dithiothreitol - Fo, Fm, Fv initial, maximum, and variable fluorescence - quantum yield - PFD photon flux density - PSII photosystem II To whom correspondence should be addressedWe are grateful to O. Björkman and S. Thayer, Carnegie Institution of Washington, Stanford, Cal., USA, for analysis of xanthophyll pigments reported here. This research was supported by National Science Foundation grant OCE-8812157 to C.B.O. and J.R. Support for G.L. was provided by a NSF-CNRS (Centre National de la Recherche Scientifique) exchange fellowship.  相似文献   

9.
Increases of 23- (5.6 mmol acetylene reduced mg dry wt–1) and 16- (4 mmol acetylene reduced mg dry wt–1) fold in nitrogenase activity and 12- (671 l H2 mg dry wt–1 h–1) and 6- (349 l mg dry wt–1 h–1) fold in H2 photoproduction in Rhodopseudomonas palustris JA1 over 24 h were achieved with pyrazine 2-carboxylate (3 mM) and 3-picoline (3 mM), respectively, and were higher than earlier reports of enhancement (1.5 to 5- fold) in biological H2 production using various alternative methods.  相似文献   

10.
Brevibacterium linens forms hydrolytic enzymes which can be used to accelerate the ripening of cheese without causing bitterness. B. linens ATCC 9172 was grown to a high cell density (50 g dry wt l–1 after 60 h) in a mineral medium containing lactic acid, soy-peptone and ammonium sulphate by applying a continuous feed of nutrients. The maximal activities of l-leucine aminopeptidase and cell-associated proteinase were 286 U l–1 and 202 U l–1, respectively. The cell-associated lipolytic activity exhibited a strong and sudden increase at 46 h, resulting in a maximum of 9.5 U g–1 dry wt; thus the volumetric productivity of proteolytic and lipolytic activity was 4220 U l–1 h–1 and 7.3 U l–1 h–1, respectively.  相似文献   

11.
Accelerated autolysis of Saccharomyces cerevisiae mc2 in synthetic wine medium enabled the release of 3.7 mg peptide nitrogen/l, concomitantly with an increase in antioxidant properties (243 μmol FeSO4/l in the case of ferric reducing antioxidant power and 0.5% in 2,2-diphenyl-1-picrylhydrazyl radical scavenging) and antihypertensive activity (22% in angiotensin I-converting enzyme inhibitory activity). Sequential inoculation of a proteolytic Oenococcus oeni strain in the synthetic medium after yeast autolysis produced an increase in peptide nitrogen concentration of 1.5 mg/l after 48 h of growth. After this incubation time an improvement in antihypertensive and antioxidant activities was detected. Oenococcus oeni X2L could give additional value to wine because of the bioactive peptides with multifunctional beneficial activity released as consequence of its proteolytic activity.  相似文献   

12.
Summary The kinetics of lactate dehydrogenase in mouse cardiac muscle fibres, skeletal muscle fibres, gastric parietal cells, parotid gland ductal and acinar cells, oocytes and mouse and human hepatocytes were studied as a function of substrate concentration in sections of unfixed mouse and human tissues incubated at 37°C on lactate agarose gel films. The absorbances of the final reaction products deposited in single cells of various types were measured continuously as a function of incubation time using an image analysis system. The initial velocities (v i) of the dehydrogenase were calculated from two equations deduced previously by us, v i = a1A (equation 1) and v i = v + a 2A (equation 2), where v and A are, respectively, the gradient (steady-state velocity) and intercept of the linear regression line of absorbance on time for incubation times between 1 and 3 min, and a 1 and a 2 are constants characteristic for each cell type.Hanes plots using v i, calculated from equation 2 gave more consistent estimates of the Michaelis constant (K m) and the maximum reaction velocity (V max ) than those employing either steady-state velocity measurements or v i calculated from equation 1. The K m thus found for mouse skeletal muscle fibres (10.4–12.5 mM) and hepatocytes (14.3–16.7 mM) agreed well with values determined previously in biochemical assays. However, the K m for cardiac muscle fibres (13.4 mM) was higher. The K m of the enzyme in gastric parietal cells, parotid gland cells and oocytes was in the range 7.6–9.7 mM. The Vmax were more diverse, ranging from 29 moles hydrogen equivalents/cm3 cytoplasm/min units in mouse parotid gland acinar cells, 59–68 units in skeletal and cardiac muscle fibres, 62–65 units in gastric parietal cells and oocytes, and 102–110 units in hepatocytes. The diversity found for K m and V max in different cell types confirms the value of the quantitative histochemical approach in revealing the heterogeneity of cellular metabolism in situ.  相似文献   

13.
Summary Activation of protein kinase C has been shown to cause both stimulation and inhibition of transport processes in the brush-border membrane and renal tubule. This study was designed to examine the dose-response nature and time-dependent effect of 4 -phorbol-12-myristate-13-acetate (PMA) on the rates of bicarbonate absorption (J HCO3) and fluid absorption (J v) in the proximal convoluted tubule (PCT) of rat kidney. Bicarbonate flux was determined by total CO2 changes between the collected fluid and the original perfusate as analyzed by microcalorimetry. Luminal perfusion of PMA (10–10 10–5 M) within 10 min caused a significant increase ofJ HCO3 andJ v. A peaked curve of the dose response was observed with maximal effect at 10–8 M PMA on both bicarbonate and fluid reabsorption, which could be blocked completely by amiloride (10–3 m) and EIPA (10–5 M). On the other hand, with an increase of perfusion time beyond 15 min, PMA (10–8 and 10–6 M) could inhibitJ HCO3 andJ v. Amiloride (10–3 M) or EIPA (10–5 M) significantly inhibitsJ HCO3 andJ v, while there is no additive effect of PMA and amiloride or EIPA on PCT transport. An inactive phorbol-ester, 4-phorbol, that does not activate protein kinase C, had no effects onJ HCO3 andJ v. Capillary perfusion of PMA (10–8 M) significantly stimulate bothJ HCO3 andJ v; however, PMA did not affect glucose transport from either the luminal side or basolateral side of the PCT. These results indicate that activation of endogenous protein kinase C by PMA could either stimulate or inhibit both bicarbonate and fluid reabsorption in the PCT dependent on time and dose, and these effects are through the modulation of Na+/H exchange mechanism.  相似文献   

14.
Previous modelling of the pullulan fermentation is discussed and found to lack any mechanistic basis. It is concluded that predictive ability can only be conferred by a structured model with at least two compartments, based upon the best available knowledge of the physiology of the microorganism. Such a model is constructed and compared with experimental data.List of Symbols A (gdm–3)(g/l) Ammonium ion concentration - B (gdm–3)(g/l) Concentration of balanced growth compartment of biomass - G (gdm–3)(g/l) Glucose concentration - k A (gdm–3)(g/l) Saturation constant for ammonium - k G (gdm–3)(g/l) Saturation constant for glucose - k S (gdm–3)(g/l) Saturation constant for sucrose - P (gdm–3)(g/l) Pullulan concentration - Q Quality of biomass=U/(U+B) - r G (gdm–1h–1)(g/l/h) Rate of removal of glucose from broth - r GB (gdm–3h–1)(g/l/h) Rate of incorporation of glucose into balanced compartment - r GB (gdm–3h–1)(g/l/h) Rate of utilisation of glucose for energy production and cell maintenance - r GP (gdm–3h–1)(g/l/h) Rate of conversion of glucose to pullulan - r GU (gdm–3h–1)(g/l/h) Rate of incorporation of glucose into unbalanced compartment - r s (gdm–3h–1)(g/l/h) Rate of conversion of sucrose to glucose - S (gdm–3)(g/l) Concentration of sucrose - U (gdm–3)(g/l) Concentration of unbalanced growth compartment of biomass - X (gdm–3)(g/l) Biomass concentration - Y G/A Grams of glucose consumed per gram of ammonium consumed - Y G/B Grams of glucose consumed per gram of balanced biomass produced - Y G/U Grams of glucose consumed per gram of unbalanced biomass produced - Y G/P Grams of glucose consumed per gram of pullulan produced - Rate constant for conversion of sucrose to glucose - Rate constant for uptake of glucose by the cells - Model parameter governing inhibition of sucrose conversion and glucose utilisation - Model parameter denoting fraction of glucose uptake devoted to cell maintenance and energy production - Model parameter governing apportionment of glucose between pseudo-growth and pullulan production This work was funded by the National Engineering Laboratory (NEL) through the Bioreactor Design Club. The authors would like to express their gratitude to the NEL for this generous support.  相似文献   

15.
A newly isolated halotolerant Bacillus sp. VITP4 was investigated for the production of extracellular protease. 16S rRNA gene analysis identified it as Bacillus aquimaris. Enzyme secretion corresponded with growth (Gt, 38 min) in the basal Zobell medium, reaching a maximum during stationary phase (630 U/ml, 48 h). Protease production was investigated in different salt concentrations (0–4 M). While growth was optimum in the basal medium, higher levels of protease activity were observed in 0.5 M salt medium (728 U/ml, 48 h) and 1 M salt medium (796 U/ml, 78 h) with 21% and 32% increase in production, respectively. Salt concentrations above 2.5 M did not support bacterial growth. The optimum pH and temperature for production were pH 7.5 and 37 °C, respectively. A combination of peptone and yeast extract yielded optimum protease secretion. Inorganic nitrogen sources proved to be less favourable. Production was reduced in the presence of readily available carbon sources owing to catabolic repression. Effect of various salts (1–6%) indicated favourable bacterial growth in these conditions for producing proteolytic molecules with increased activity. The study assumes significance in the ability of the halotolerant bacterium to survive in a wide range of salinity and yield optimum levels of extracellular protease.  相似文献   

16.
The effect of copper ions in seawater (0.02 mg/l) on the early stages of development of the sea urchin Strongylocentrotus intermedius was studied. Copper exposure from fertilization or the prism stage retarded development and growth and led to abnormalities in the morphology of the embryos and larvae. However, if development to the pluteus stage proceeded in clean seawater, an increased copper concentration did not inhibit the growth of larvae. If sea urchin embryos at fertilization and the prism stage were maintained for 1–2 days in seawater containing 0.02 mg Cu/l and then transferred to clean seawater, the adverse consequences of this exposure remained present after 48 h.  相似文献   

17.
Zusammenfassung In einem Windkanal wurde für eine Myotis lucifugus die Abhängigkeit der Fluggeschwindigkeit (vF) und der Geschwindigkeit über Grund (vG) von der Windgeschwindigkeit (vW) bestimmt. Die Fledermaus flog bei Windstille mit einer mittleren vF von etwa 4,5 m/sec. Bei zunehmenden Gegenwinden erhöhte sie vF und verringerte vG, um bei vW=7,7 m/sec für kurze Zeit stationären Flug (vG=0) zu erreichen. Die Flügelschlagfrequenz lag bei Gegenwinden von 0–7,7 m/sec zwischen 10–11/sec. Bei zunehmenden Rückenwinden wurde der Flug immer mehr dem Rüttelflug ähnlich und die Flügelschlagfrequenz stieg bis 16/sec an. Die vG blieb nahezu konstant in einem Bereich zwischen 4,5–5 m/sec. Bei Myotis lucifugus, Chilonycteris rubiginosa, Carollia perspillicata und Rhinolophus ferrum-equinum wurde die Flügelstellung während der Lautaussendung ermittelt. Alle Arten erzeugten entweder einen Einzellaut oder eine Gruppe von Lauten pro Flügelschlag.
Bats in the wind tunnel
Summary In an experimental wind tunnel air speed (vF) and ground speed (vG) of a Myotis lucifugus were measured as a function of wind speed (vW). The bat had a vF of about 4,5 m/sec in still air. With head winds it increased vF and lowered vG to reach stationary flight (vG=0) at a vW of 7,7 m/sec. The rate of wing motion remained at about 10–11/sec at head winds from 0–7,7 m/sec. With tail winds the bat changed to a semi-hovering flight with wing beat frequencies rising to about 16/sec and vF dropping to almost zero at 4–5 m/sec tailwinds. The vG remained nearly constant between about 4,5–5 m/sec. (Figs. 2 and 3). The wing positions during which orientation sounds were emitted were determined for Myotis lucifugus (Fig. 4), Chilonycteris rubiginosa, Carollia perspillicata and Rhinolophus ferrum-equinum (Fig. 5). All bats emitted either one single sound or a group of sounds per wing beat.
  相似文献   

18.
Baterial lipase from Staphylococcus carnosus (pLipMut2) has been immobilized on various supports in order to determine a suitable immobilization technique in terms of activity and stability, when utilized for the hydrolysis of tributyrin. The hydrophobic materials PBA Eupergit and PBA Eupergit 250L prooved to be appropriate supports, when the enzyme was crosslinked with glutaraldehyde after adsorption. No desorption of the immobilized enzyme occured during operation. The pore size of the support has a strong effect on the activity but does not influence stability.The initial activity for immobilized and soluble lipase is found to follow the Arrhenius equation at low temperature, where mass transfer does not affect reaction kinetics. Activation energies for soluble and immobilized lipase were evaluated to be 21.7 kJ mol–1 and 60.8 kJ mol–1, respectively.Operational stability was studied in a packed bed recirculation reactor. Thermal desactivation followed first order kinetics with a half-life of 1340 h at 10°C. Model calculations for productivity showed, that optimal temperatures for high productivity are well below the temperature of maximal activity.List of Symbols E a [kJ mol–1] activation energy - E d [kJ mol–1] activation energy of desactivation - H [–] half-number - k d [h–1] desactivation constant - k d, [h–1] constant - k N [–] desactivation constant (number) - N [–] number of runs - p [mol dm–3] productivity - t [h] time - t 0.5 [h] half-life - T [K] absolute temperature - V [U ml–1] activity - V(N) [Uml–1] activity exhibited in the n-th run - V s,O [U ml–1] initial activity of supernatant - V s, [U ml–1] activity of supernatant after immobilization - V O [U ml–1] initial activity - V [U ml–1] constant - imm [–] activity yield - [ml ml–1] ratio of volume of support to volume of supernatant Financial support of this work by the Deutsche Forschungsgemeinschaft (SFB 145, A15) is gratefully acknowledged.  相似文献   

19.
Summary Cell growth and phenol degradation kinetics were studied at 10°C for a psychrotrophic bacterium, Pseudomonas putida Q5. The batch studies were conducted for initial phenol concentrations, So, ranging from 14 to 1000 mg/1. The experimental data for 14<=So<=200 mg/1 were fitted by non-linear regression to the integrated Haldane substrate inhibition growth rate model. The values of the kinetic parameters were found to be: m=0.119 h–1, K S=5.27 mg/1 and K I=377 mg/1. The yield factor of dry biomass from substrate consumed was Y=0.55. Compared to mesophilic pseudomonads previously studied, the psychrotrophic strain grows on and degrades phenol at rates that are ca. 65–80% lower. However, use of the psychrotrophic microorganism may still be economically advantageous for waste-water treatment processes installed in cold climatic regions, and in cases where influent waste-water temperatures exhibit seasonal variation in the range 10–30°C.Nomenclature K S saturation constant (mg/l) - K I substrate inhibition constant (mg/l) - specific growth rate (h–1) - m maximum specific growth rate without substrate inhibition (h–1) - max maximum achievable specific growth rate with substrate inhibition (h–1) - S substrate (phenol) concentration (mg/l) - So initial substrate concentration (mg/l) - Smax substrate concentration corresponding to max (mg/l) - t time (h) - X cell concentration, dry basis (mg DW/l) - Xf final cell concentration, dry basis (mg DW/l) - Xo initial cell concentration, dry basis (mg DW/l) - Y yield factor (mg DW cell produced/mg substrate consumed)  相似文献   

20.
Liquefaction of dry and freshPalmaria palmata by food grade enzyme preparations and a purified endo--1,4-D-xylanase was studied.The endo--1,4-D-xylanase (EC 3.2.1.8) was purified to homogeneity from a commercial food grade enzyme prepared fromAspergillus niger. It has a molecular weight of 22 500, a pI of 3.5, is inactive toward corn arabinoxylan,p-nitrophenyl--D-xylose, carboxymethyl cellulose but shows a weak activity toward microcrystalline cellulose. It hydrolyzes oat and dulse xylan equally well in seawater and deionized water essentially into xylose and xylobiose. It is stable between pH 5.5 to 9.0 and 0 to 30 °C and its activity is optimal at pH 4.5–5.5 and 40–60 °C. It has a Km of 2.2 and 2.8 mg ml-1 and Vmax of 3600 and 3900 nkat mg-1 of protein on oat and dulse xylan, respectively.Acetate buffer, deionized water and seawater alone extracted 62.6 to 64.5 % of the dry weight of dry dulse, but the use of commercial food grade enzyme preparations or the purified xylanase improved liquefaction to 81.2–87.1 %. Xylose and galactose were the only sugars present in the soluble extracts. Deionized and seawater extracted 58.8–52.7 and 39.1–42.2% of the dry weight of the fresh algae collected in fall and summer, respectively. Only galactose was found in the seawater extract, while some xylose with galactose were measured in the deionized water extract of the fresh autumn algal sample. Purified and crude xylanase improved liquefaction of fresh algae to 79.8–81.4 and 71.9–77.9% of the fresh dry weight (fall and summer, respectively) in deionized and seawater, respectively, and increased the xylose content of the soluble fractions. Polysaccharides in the soluble residues were composed of 1,3/1,4-linked xylose, 1-linked galactose (floridoside) and 1,4-linked glucose (cellulose) and contained essentially 1,4-linked xylose and 1,4-linked glucose in insoluble fractions obtained after enzymatic treatment.The use of xylanase-containing food grade enzyme preparations improves liquefaction ofPalmaria palmata, particularly from fresh alga. This study indicates that processing such as drying may modify markedly the solubility ofP. palmata cell wall polysaccharides, which would imply the existence of some organization and/or other components in the fresh cell wall that lower xylan solubility in seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号