首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adherence to and invasion of epithelial cells represent important pathogenic mechanisms of Streptococcus pyogenes . A fibronectin-binding surface protein of S. pyogenes , SfbI protein, has been implicated in both adherence and invasion processes. Invasion of SfbI-containing strains has been suspected to be responsible for the failure of antibiotics treatment to eradicate S. pyogenes . In this study, we tested the adherence and invasion properties of two well-characterized clinical isolates: A40, which expresses SfbI; and A8, which is SfbI negative and is unable to bind fibronectin. In strain A40, SfbI was the main factor required for attachment and invasion by using fibronectin as a bridging molecule and the α5β1 integrin as cellular receptor. The uptake process was characterized by the generation of large membrane invaginations at the bacteria–cell interface without evidence of actin recruitment or cellular injury. A40 cells were located in phagosomes and, only 24 h after infection, a consistent part of the bacterial population reached the cytoplasm. In contrast, uptake of strain A8 required major rearrangements of cytoskeletal proteins underneath attached bacteria. In A8, a proteinaceous moiety was involved, which does not interact with α5β1 or need any known bridging molecule. Bacterial attachment stimulated elongation and massive recruitment of neighbouring microvilli, which fused to surround streptococcal chains. They led to the generation of large pseudopod-like structures, which engulfed bacteria that were rapidly released and replicated in the cytoplasm. The identification of two completely different uptake pathways reported here provided further evidence regarding the diversity of S. pyogenes isolates and might contribute towards understanding the pathogenesis and persistence of S. pyogenes .  相似文献   

2.
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.  相似文献   

3.
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen.  相似文献   

4.
The antigenically variant M protein of Streptococcus pyogenes enhances virulence by promoting resistance to phagocytosis. The serum opacity factor (OF), produced by a subset of M serotypes, is also antigenically variant, and its antigenic variability exactly parallels that of M protein. OF-positive and OF-negative streptococci are also phenotypically distinguishable by a number of other criteria. In order to study the differences between OF-positive and OF-negative streptococci, we cloned and sequenced the type 49 M protein gene (emm49), the first to be cloned from an OF-positive strain. This gene showed evolutionary divergence from the OF-negative M protein genes studied previously. Furthermore, emm49 was part of a gene family, in contrast to the single-copy nature of previously characterized M protein genes.  相似文献   

5.
6.
The region of temperate bacteriophage T12 responsible for integration into the chromosome of Streptococcus pyogenes has been identified. The integrase gene ( int ) and the phage attachment site ( attP ) are found immediately upstream of the gene for speA , the latter of which is known to be responsible for the production of erythrogenic toxin A (also known as pyrogenic exotoxin A). The integrase gene has a coding capacity for a protein of 41 457 Da, and the C-terminus of the deduced protein is similar to other conserved C-terminal regions typical of phage integrases. Upstream of int is a second open reading frame, which is capable of encoding an acidic protein of 72 amino acids (8744 Da); the position of this region in relation to int suggests it to be the phage excisionase gene ( xis ). The arms flanking the integrated prophage ( attL and attR ) were identified, allowing determination of the sequences of the phage ( attP ) and bacterial ( attB ) attachment sites. A fragment containing the integrase gene and attP was cloned into a streptococcal suicide vector; when introduced into S. pyogenes by electrotransformation, this plasmid stably integrated into the bacterial chromosome at attB . The insertion site for the phage into the S. pyogenes chromosome was found to be in the anticodon loop of a putative type II gene for a serine tRNA. attP and attB share a region of identity that is 96 bp in length; this region of identity corresponds to the 3' end of the tRNA gene such that the coding sequence remains intact after integration of the prophage. The symmetry of the core region of att may set this region apart from previously described phage attachment sites (Campbell, 1992), and may play a role in the biology of this medically important bacteriophage.  相似文献   

7.
Wall-anchored surface proteins are critical for the in vivo survival of Streptococcus pyogenes. Cues in the signal sequence direct the membrane translocation of surface proteins: M protein to the septum, and SfbI to the poles. Both proteins are subsequently anchored to the wall by the membrane bound enzyme sortase A. However, the cellular features of these pathways are not fully understood. Here we show that M protein and SfbI are anchored simultaneously throughout the cell cycle. M protein is rapidly anchored at the septum, and in part of the cell cycle, is anchored simultaneously at the mother and daughter septa. Conversely, SfbI accumulates gradually on peripheral peptidoglycan, resulting in a polar distribution. Sortase is not required for translocation of M protein or SfbI at their respective locations. Methicillin-induced unbalanced peptidoglycan synthesis diminishes surface M protein but not SfbI. Furthermore, overexpression of the division regulator DivIVA also diminishes surface M protein but increases SfbI. These results demonstrate a close connection between the regulation of cell division and protein anchoring. Better understanding of the spatial regulation of surface anchoring may lead to the identification of novel targets for the development of anti-infective agents, given the importance of surface molecules for pathogenesis.  相似文献   

8.
Fibronectin-binding surface proteins are found in many bacterial species. Most strains of Streptococcus pyogenes, a major human pathogen, express the fibronectin-binding protein F1, which promotes bacterial adherence to and entry into human cells. In this study, the role of fibronectin in S. pyogenes virulence was investigated by introducing the protein F1 gene in an S. pyogenes strain lacking this gene. Furthermore, transgenic mice lacking plasma fibronectin were used to examine the relative contribution of plasma and cellular fibronectin to S. pyogenes virulence. Unexpectedly, protein F1-expressing bacteria were less virulent to normal mice, and virulence was partly restored when these bacteria were used to infect mice lacking plasma fibronectin. Dissemination to the spleen of infected mice was less efficient for fibronectin-binding bacteria. These bacteria also disseminated more efficiently in mice lacking plasma fibronectin, demonstrating that plasma fibronectin bound to the bacterial surface downregulates S. pyogenes virulence by limiting bacterial spread. From an evolutionary point of view, these results suggest that reducing virulence by binding fibronectin adds selective advantages to the bacterium.  相似文献   

9.
10.
11.
Entry of group A streptococcus (GAS) into cells has been suggested as an important trait in GAS pathogenicity. Protein F1, a fibronectin (Fn) binding protein, mediates GAS adherence to cells and the extracellular matrix, and efficient cell internalization. We demonstrate that the cellular receptors responsible for protein F1-mediated internalization of GAS are integrins capable of Fn binding. In HeLa cells, bacterial entry is blocked by anti-β1 integrin monoclonal antibody. In the mouse cell line GD25, a β1 null mutant, the αvβ3 integrin promotes GAS entry. Internalization of these cells by GAS is blocked by a peptide that specifically binds to αvβ3 integrin. In both cell lines, entry of GAS requires the occupancy of protein F1 by Fn. Neither the 29 kDa nor the 70 kDa N-terminal fragments or the 120 kDa cell-binding fragment of Fn promote bacterial entry. Fn-coated beads are taken up efficiently by HeLa cells. Both the entry of GAS via protein F1 and the uptake of Fn-coated beads are blocked by anti-β1 antibody but are unaffected by a large excess of soluble Fn. Internalization of HeLa cells by bacteria bearing increasing amounts of prebound Fn to protein F1 reveals a sigmoidal ultrasensitive curve. These suggest that the ability of particles to interact via Fn with multiple integrin sites plays a central role in their ability to enter cells.  相似文献   

12.
13.
Two distinct proton binding sites in the ATP synthase family   总被引:1,自引:0,他引:1  
von Ballmoos C  Dimroth P 《Biochemistry》2007,46(42):11800-11809
The F1F0 ATP synthase utilizes energy stored in an electrochemical gradient of protons (or Na+ ions) across the membrane to synthesize ATP from ADP and phosphate. Current models predict that the protonation/deprotonation of specific acidic c ring residues is at the core of the proton translocation mechanism by this enzyme. To probe the mode of proton binding, we measured the covalent modification of the acidic c ring residues with the inhibitor dicyclohexylcarbodiimide (DCCD) over the pH range from 5 to 11. With the H+-translocating ATP synthase from the archaeum Halobacterium salinarium or the Na+-translocating ATP synthase from Ilyobacter tartaricus, the pH profile of DCCD labeling followed a titration curve with a pKa around neutral, reflecting protonation of the acidic c ring residues. However, with the ATP synthases from Escherichia coli, mitochondria, or chloroplasts, a clearly different, bell-shaped pH profile for DCCD labeling was observed which is not compatible with carboxylate protonation but might be explained by the coordination of a hydronium ion as proposed earlier [Boyer, P. D. (1988) Trends Biochem. Sci. 13, 5-7]. Upon site-directed mutagenesis of single binding site residues of the structurally resolved c ring, the sigmoidal pH profile for DCCD labeling could be converted to a more bell-shaped one, demonstrating that the different ion binding modes are based on subtle changes in the amino acid sequence of the protein. The concept of two different binding sites in the ATP synthase family is supported by the ATP hydrolysis pH profiles of the investigated enzymes.  相似文献   

14.
15.
Fibronectin (Fn), discovered by Harvard's Plasma Protein Program as plasma "cold-insoluble globulin" in the 1940s, has attracted much interest over the past three decades. One of the most interesting features of Fn is its ability to change shape in response to various environmental conditions and interactions with other substances found in the extra-cellular space. Here we examine the potential of the functional upstream domain (FUD) of Streptococcus pyogenes protein F1 to bring about changes in structure of Fn. In particular, we investigate the accessibility of Fn's 10th type III module that contains the integrin binding RGD motif. By use of monoclonal antibodies in a competitive ELISA assay, we found that FUD interacts with the amino-terminal type I modules of Fn to unveil the cell-binding region of Fn. This conformational change was achieved at sub-equimolar ratios of FUD/Fn monomer. We discuss the functional relevance of the interaction for both Fn and S. pyogenes and correlate the results with a conformational model of Fn that arose out of a collaboration between our laboratory and that of John Ferry.  相似文献   

16.
Streptococcin A-FF22 (SA-FF22) is a lantibiotic produced by Streptococcus pyogenes FF22. The nucleotide sequence of the SA-FF22 structural gene (scnA) was determined and shown to encode a 51-amino-acid prepeptide. The proteolytic processing site of the SA-FF22 prepeptide differs from that which characterizes other type A lantibiotics.  相似文献   

17.
Fibronectin-binding protein I (SfbI) from Streptococcus pyogenes plays a key role in bacterial adhesion to, and invasion of, eukaryotic cells. In addition, SfbI exhibits a considerable potential as mucosal adjuvant and can trigger polyclonal activation of B cells. Here, we report that SfbI is also capable of binding human IgG in a nonimmune fashion. SfbI was reactive with IgG1, IgG2, IgG3, and IgG4 isotypes (type IIo IgG-binding profile). The affinity constant (Kd) of the SfbI-IgG interaction was in the range of 1-2 x 10(-5) M. Further studies demonstrated that the SfbI binding was mediated by the Fc component of the IgG molecule. Experiments performed using purified recombinant proteins spanning different domains of SfbI showed that the IgG-binding activity was restricted to the fibronectin-binding domains, and in particular to the fibronectin-binding repeats. Finally, the presence of recombinant SfbI resulted in an impairment of both phagocytosis of IgG-coated RBCs and Ab-dependent cell cytotoxicity by macrophages. These results demonstrated for the first time that, in addition to its major role during the colonization process, SfbI may also favor bacterial immune evasion after the onset of the infection by interfering with host clearance mechanisms.  相似文献   

18.
Some isolates of the significant human pathogen Streptococcus pyogenes, including virulent strains of the M1 serotype, secrete protein SIC. This molecule, secreted in large quantities, interferes with complement function. As a result of natural selection, SIC shows a high degree of variation. Here we provide a plausible explanation for this variation and the fact that strains of the M1 serotype are the most frequent cause of severe invasive S. pyogenes infections. Thus, protein SIC was found to inactivate human neutrophil alpha-defensin and LL-37, two major antibacterial peptides involved in bacterial clearance. This inactivation protected S. pyogenes against the antibacterial effect of the peptides. Moreover, SIC isolated from S. pyogenes of the M1 serotype was more powerful in this respect than SIC variants from strains of M serotypes 12 and 55, serotypes rarely connected with invasive infections.  相似文献   

19.
We have determined the nucleotide sequence of the gene encoding adenovirus type 2 (Ad2) DNA binding protein (DBP). From the nucleotide sequence the complete amino acid sequence of Ad2 DBP has been deduced. A comparison of the amino acid sequences of Ad2 and Ad5 DBP, both 529 residues long, reveals that the C-terminal 354 residues of both sequences are identical. Within the N-terminal 175 amino acid residues Ad2 and Ad5 show nine differences. The site of mutation in Ad2 ND1ts23, a mutant with a temperature-sensitive DNA replication, was mapped at the nucleotide level. A single nucleotide alteration in the DBP gene, resulting in a leucine leads to phenylalanine substitution at position 282 in the amino acid sequence is responsible for the temperature-sensitive character of this mutant. Previously, we localized the mutation of another DBP mutant with a temperature-sensitive DNA replication (H5ts125) at position 413 in the amino acid sequence of the DBP molecule (Nucleic Acids Res. 9 (1981) 4439-4457). These mapping data are discussed in relation to the structure and function of the DBP molecule.  相似文献   

20.
Heng NC  Burtenshaw GA  Jack RW  Tagg JR 《Plasmid》2004,52(3):1370-229
Production of the novel bacteriocin streptococcin A-M57 (SA-M57) by Streptococcus pyogenes strains of M-protein type 57 is plasmid-associated. Plasmid pDN571 (3351bp) harbored by S. pyogenes 71-724, the prototype M-type 57 strain, has been completely sequenced and contains three putative open reading frames (repA, scnM57 and ORF3). In addition, the double-strand and single-strand (SSO) origins of replication were identified. Analysis of the replication-associated genetic elements places pDN571 in the ubiquitous pC194/pUB110 family of rolling-circle plasmids. The SSO of pDN571 is of the ssoA type. SA-M57 (encoded by scnM57) is synthesized as a secreted 179-amino acid polypeptide with a 27-residue secretion signal peptide and has no homology to proteins of known function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号