首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ginseng (Panax ginseng C.A. Meyer) is known for its therapeutically useful ginsenosides that have anticancer and other pharmacological effects. However, its low levels in plants and the high costs of chemical synthesis make ginsenosides commercially non-viable; as such, strategies for increasing ginsenoside yield are of great interest. The present study reports the isolation of eight novel endophytic bacteria from ginseng leaves, the highest ginsenoside concentration of microbial transformed strain was identified as Paenibacillus polymyxa. Inoculation of ginseng plants with P. polymyxa by foliar application combined with irrigation enhanced plant growth parameters, reduced morbidity, and increased plant concentration of the ginsenosides (Rg1, Re, Rf, Rb1, Rg2, Rb2, Rb3, and Rd) in field experiments. These results indicate that P. polymyxa isolated from ginseng is a beneficial endophytic bacterium with biocontrol properties that can enhance the yield and quality of this medicinal plant.  相似文献   

2.
A ginsenosidase specifically hydrolyzing multi-20-O-glycosides of protopanaxadiol type ginsenosides such as ginsenoside Rb1, Rb3, Rb2 and Rc, named ginsenosidase type II, was isolated and purified from Aspergillus sp.g48p strain. The molecular weight of the enzyme was 60 kDa. Ginsenosidase type II was demonstrated to hydrolyze multi-20-O-glycoside of protopanaxadiol type ginsenoside Rb1, Rb3, Rb2 and Rc; i.e. the ginsenosidase type II hydrolyzes 20-O-β-glucoside of the ginsenoside Rb1, 20-O-β-xyloside of ginsenoside Rb3, 20-O-α-arabinoside(p) of ginsenoside Rb2 and α-arabinoside(f) of ginsenoside Rc to produce mainly ginsenoside Rd, and small amount of Rg3. However, it did not hydrolyze 3-O-β-glucosides of ginsenoside Rb1, Rb3, Rb2 and Rc which was different with the ginsenosidase type I previously reported, either did not hydrolyze the glycosides of protopanaxatriol type ginsenoside such as ginsenoside Re, Rf and Rg1, showing significant difference from all previously described glycosidases.  相似文献   

3.
Rb1 and Rg1 are the major ginsenosides in protopanaxadiol and protopanaxatriol. Their content in ginsenosides was 23.8 and 17.6%, respectively. A total of 22 isolates of β-glucosidase producing microorganisms were isolated from the soil of a ginseng field using Esculin-R2A agar. Among these isolates, the strain GH21 showed the strongest activities to convert ginsenoside Rb1 and Rg1 to minor ginsenosides compound-K and F1, respectively. Ginsenosides Rb1 and Rg1 bioconversion rates were 74.2 and 89.3%, respectively. Meanwhile, the results demonstrated that the ginsenoside Rg1 could change the biotransformation pathway of ginsenoside Rb1 by inhibiting the formation of the intermediate metabolite gypenoside-XVII. GH21 was identified as a Cladosporium cladosporioides species based on the internal transcribed spacers (ITS) ITS1-5.8S-ITS2 rRNA gene sequences constructed phylogenetic trees.  相似文献   

4.
In order to compare the ginsenoside composition in native Panax quinquefolium and in suspension cultured cells derived from root callus, HPLC–ESI-MSn analysis was performed. Under the present HPLC–ESI-MSn conditions, ten ginsenosides from native root were acquired in the positive and negative ion modes, namely Rg1, Re, Ro, malonyl-Rb1, Rf, Rb1, Rc, Rb2, Rb3 and Rd. Only four ginsenosides (Rg1, Re, Rf and Rb1) were identified from callus cells. Radical scavenging activity of P. quinquefolium callus cells with 250 mg l?1 methanolic extract on 1,1-diphenyl-2-picrylhydrazyl (DPPH) was 55.72 %, while only 6.31 % DPPH inhibition was obtained in native root.  相似文献   

5.
MethodsThe autotoxicities were measured using seedling emergence bioassays and root cell vigor staining. The ginsenosides in the roots, soils, and root exudates were identified with HPLC-MS.ResultsThe seedling emergence and survival rate decreased significantly with the continuous number of planting years from one to three years. The root exudates, root extracts, and extracts from consecutively cultivated soils also showed significant autotoxicity against seedling emergence and growth. Ginsenosides, including R1, Rg1, Re, Rb1, Rb3, Rg2, and Rd, were identified in the roots and consecutively cultivated soil. The ginsenosides, Rg1, Re, Rg2, and Rd, were identified in the root exudates. Furthermore, the ginsenosides, R1, Rg1, Re, Rg2, and Rd, caused autotoxicity against seedling emergence and growth and root cell vigor at a concentration of 1.0 µg/mL.ConclusionOur results demonstrated that autotoxicity results in replant failure of Sanqi ginseng. While Sanqi ginseng consecutively cultivated, some ginsenosides can accumulate in rhizosphere soils through root exudates or root decomposition, which impedes seedling emergence and growth.  相似文献   

6.
Structure-similar ginsenosides have different or even totally opposite biological activities, and manipulation of ginsenoside heterogeneity is interesting and significant to biotechnological application. In this work, addition of 1 mM phenobarbital to cell cultures of Panax notoginseng at a relatively high inoculation size of 7.6 g dry cell weight (DW)/L enhanced the production of protopanaxatriol-type (Rg1 + Re) ginsenosides in both shake flask and airlift bioreactor (ALR, 1 L working volume). The content of Rg1 + Re in the ALR was increased from 42.5 ± 4.0 mg per gram DW in untreated cell cultures (control) to 56.4 ± 4.6 mg per gram DW with addition of 1.0 mM phenobarbital. The maximum productivity of Rg1 + Re in the ALR reached 5.66 ± 0.38 mg L−1 d−1, which was almost 3.3-fold that of control. The maximum ratio of the detectable ginsenosides protopanaxatriol:protopanaxadiol (Rb1) was 7.6, which was about twofold that of control. The response of protopanaxadiol 6-hydroxylase (P6H) activity to phenobarbital addition coincided with the above-mentioned change of ginsenoside heterogeneity (distribution). Phenobarbital addition is considered as a useful strategy for manipulating the ginsenoside heterogeneity in bioreactor with enhanced biosynthesis of protopanaxatriol by P. notoginseng cells.  相似文献   

7.
The study assessed the influence of sugar concentration (10, 20, 30, 50, 70, 100, 120 g l?1) on growth and ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The highest growth rate was achieved in medium containing 3–5 % sucrose. More than 70 g l?1 or less than 20 g l?1 sugar content in the medium induces significant inhibition of root growth when cultivated in shake flasks. The saponin content was determined using HPLC. The maximum yield (above 9 mg g?1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was obtained with 30 g l?1 sucrose in the medium. The sucrose concentration in the medium was found to correlate with saponin content in bioreactor-cultured specimens. A higher level of protopanaxadiol derivatives was found for lower (20 and 30 g l?1) sucrose concentrations; higher sucrose concentrations (50 and 70 g l?1) in the medium stimulated a higher level of Rg group saponins.  相似文献   

8.
Biomass growth and ginsenoside production in cell suspension and adventitious roots of Panax ginseng C.A. Meyer cultures cultivated both in Erlenmayer flasks and a 3 dm3 bioreactor were studied. The maximum content of ginsenosides was found in the suspension culture cultivated in the bioreactor (4.34 % dry mass), however the saponin content was limited to two major ginsenosides, Rb1 and Rg1. The production of ginsenosides in adventitious roots was lower (1.45 or 1.72 % dry mass), nevertheless, the full range of ginsenosides was detected.This work was supported by 521/02/P064, COST 843.10, ME671 and Z4 055 905 projects.  相似文献   

9.
Kim YS  Yoo MH  Lee GW  Choi JG  Kim KR  Oh DK 《Biotechnology letters》2011,33(12):2457-2461
Fusarium moniliforme var. subglutinans was selected from among 100 strains of fungi for producing ginsenoside F1 from ginsenoside Rg1. The enzyme responsible was purified as a single 85 kDa band with a specific activity of 136 U mg−1. It hydrolysed glucose-linked ginsenosides Rb1, Rd and Rg1 but not for other monosaccharide-linked ginsenosides, Rb2, Rc, R1, and Re. Under the optimum conditions of pH 6.0, 50°C, 30 U l−1 of enzyme, and 5 mg Rg1 ml−1, 4 mg F1 ml−1 was produced after 4 h, with a molar yield of 100% and a productivity of 1 g l−1 h−1. This represents the highest productivity and conversion yield of F1 yet reported.  相似文献   

10.
A single addition of 200 M methyl jasmonate (MJA) to high-density cell cultures of Panax notoginseng enhanced ginsenoside production in both shake-flask (250 ml) and airlift bioreactor (ALR; 1 l working volume). Repeated elicitation with two additions of 200 M MJA during cultivation further induced the ginsenoside biosynthesis in both cultivation vessels. The content of ginsenosides Rg1, Re, Rb1 and Rd in the ALR was increased from, respectively, 0.18±0.01, 0.21±0.01, 0.21±0.02 and 0 mg per100 mg dry cell weight (DW) in untreated cell cultures (control) to 0.32±0.02, 0.36±0.02, 0.72±0.06 and 0.08±0.01 mg per100 mg DW with a single addition of MJA and further increased to 0.43±0.02, 0.46±0.03, 1.09±0.07 and 0.14±0.02 mg per100 mg DW with two additions of MJA. Interestingly, the activity of the Rb1 biosynthetic enzyme (UDPG-ginsenoside Rd glucosyltransferase), was also increased with a single elicitation by MJA and increased again by a repeated elicitation, which coincided well with the trend in the increase in Rb1 content. In order to further improve the cell density and ginsenoside production, a strategy of MJA repeated elicitation combined with sucrose feeding was adopted. The final cell density and total ginsenoside content in the ALR reached 27.3±1.5 g/l and 2.02±0.06 mg per100 mg DW; and the maximum production of ginsenoside Rg1, Re, Rb1 and Rd was 111.8±4.7, 117.2±4.6, 290.2±5.1 and 32.7±8.1 mg/l, respectively. The strategies demonstrated and the information obtained in this work are useful for the efficient large-scale production of bioactive ginsenosides by plant cell cultures.  相似文献   

11.
This study focused on the cloning, expression, and characterization of ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum KACC 20028T in order to biotransform ginsenosides efficiently. The gene, termed as bglAm, encoding a β-glucosidase (BglAm) belonging to the glycoside hydrolase family 3 was cloned. bglAm consisted of 1,830 bp (609 amino acid residues) with a predicted molecular mass of 65,277 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The recombinant BglAm was purified with a GST·bind agarose resin and characterized. The optimum conditions of the recombinant BglAm were pH 7.0 and 37 °C. BglAm could hydrolyze the outer and inner glucose moieties at the C3 and C20 of the protopanaxadiol-type ginsenosides (i.e., Rb1 and Rd, gypenoside XVII) to produce protopanaxadiol via gypenoside LXXV, F2, and Rh2(S) with various pathways. BglAm can effectively transform the ginsenoside Rb1 to gypenoside XVII and Rd to F2; the K m values of Rb1 and Rd were 0.69?±?0.06 and 0.45?±?0.02 mM, respectively, and the V max values were 16.13?±?0.29 and 51.56?±?1.35 μmol min?1 mg?1 of protein, respectively. Furthermore, BglAm could convert the protopanaxatriol-type ginsenoside Re and Rg1 into Rg2(S) and Rh1(S) hydrolyzing the attached glucose moiety at the C6 and C20 positions, respectively. These various ginsenoside-hydrolyzing pathways of BglAm may assist in producing the minor ginsenosides from abundant major ginsenosides.  相似文献   

12.
Ginsenoside Rf is known to have higher chemical stability than other ginsenosides and until lately, the constituents in which it would convert were not known. Only in recent times, it was found that ginsenoside Rf converted to (20E)-Rg9, (20Z)-Rg9, Rg10, and 20(R)-Rf. During my continued studies to update the chemical profile of red ginseng, two new ginsenosides converted from ginsenoside Rf, 25-hydroxylated ginsenosides, were discovered. These two new converted ginsenosides, namely (20E),25(OH)-ginsenoside Rg9 (1), and (20Z),25(OH)-ginsenoside Rg9 (2), together with ginsenosides (20E)-Rg9 (3), (20Z)-Rg9 (4), Rg10 (5), and 20(R)-Rf (6) were isolated from a reaction mixture of ginsenoside Rf in an acid-catalyzed reaction. Their chemical structures (1 and 2) were elucidated by NMR and Mass spectral methods. Compounds 1 and 2 were presumably generated by hydration of (20E)-, and (20Z)-ginsenoside Rg9. The presence of these six converted ginsenosides was confirmed by UPLC/TOF-MS method in red ginseng. On the basis of these results, I deduced the overall conversion mechanism of ginsenoside Rf and evaluated the significance of ginsenoside Rf as a characteristic mark substance of Panax ginseng.  相似文献   

13.
True ginseng roots contain “active compounds” called ginsenosides. The enhanced production of useful bioactive ginsenosides by high‐density cell cultures of Panax notoginseng in a self‐developed centrifugal impeller bioreactor (CIB) was achieved by adding methyl jasmonic acid (MJA) during cultivation. The production of the major, individual ginsenosides Rg1, Re and Rb1 was significantly enhanced in both 3‐L and 30‐L CIBs. The production titer of Rg1, Re and Rb1 ginsenosides in the 30‐L CIB was improved from 42 ± 8, 42 ± 9 and 41 ± 6 mg/L without MJA elicitation, to 104 ± 6, 71 ± 5 and 95 ± 6 mg/L with MJA elicitation, respectively. The ratio of Rb/Rg was slightly improved by MJA treatment in a 3‐L CIB but no apparent difference was observed in a 30‐L CIB. This work is useful for the understanding of the effects of large‐scale production on the individual ginseng saponins produced by plant cell cultures  相似文献   

14.
Chemically synthesized 2-hydroxyethyl jasmonate (HEJA) was for the first time employed to induce the ginsenoside biosynthesis and to manipulate the product heterogeneity in plant cell cultures. The dose response and timing of HEJA elicitation were investigated in cell suspension cultures of Panax notoginseng. The optimal concentration and timing of HEJA addition for both cell growth and ginsenoside accumulation was identified to be 200 μM added on day 4. It was interestingly found that HEJA could stimulate ginsenosides biosynthesis and change their heterogeneity more efficiently than methyl jasmonate (MJA), i.e., the total ginsenoside content and the Rb/Rg ratio increased about 60 and 30% with HEJA elicitation than that by MJA, respectively. The activity of Rb1 biosynthetic enzyme, i.e., UDPG-ginsenoside Rd glucosyltransferase (UGRdGT), was also higher in the former case. A maximal production titer of ginsenoside Rg1, Re, Rb1, and Rd was 47.4±4.8, 52.3±4.4, 190±18, and 12.1±2.5 mg/l with HEJA elicitation, which was about 1.3-, 1.3-, 1.7-, and 2.1-fold than that using MJA, respectively. Early signal events in plant defense response, including oxidative burst and jasmonic acid (JA) biosynthesis, were also examined. Levels of H2O2 and NO in medium and l-phenylalanine ammonia lyase activity in cells were not affected by addition of MJA and HEJA. On the other hand, the JA content in cells was increased with external jasmonates elicitation, and it was inhibited with the addition of JA biosynthesis inhibitors. The results suggest that oxidative burst might not be involved in the jasmonates-elicited signal transduction pathway, and MJA and HEJA may induce the ginsenoside biosynthesis via induction of endogenous JA biosynthesis and key enzymes (such as UGRdGT) in the ginsenoside biosynthetic pathway of P. notoginseng cells. The information is useful for hyperproduction of plant-specific heterogeneous products.  相似文献   

15.
In order to evaluate effects of γ-rays on adventitious root formation and ginsenoside production, embryogenic calli induced from cotyledon explants of Panax ginseng C.A. Meyer were treated with γ-rays of 0, 10, 30, 50, 70, and 100 Gy. The highest frequency of adventitious root formation of 75 % occurred at γ-irradiation of 30 Gy, which is considered adequate dosage for selecting mutant cell lines. Five mutated adventitious roots (MAR)3-lines out of the propagation of 142 adventitious root lines treated with 30 Gy were selected based a 100-fold increase in proliferation rate compared to control adventitious roots (CAR) and content of the seven major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) was determined. In the CAR and four of the MAR3-lines (except for MAR3-109), the Rb/Rg ratio was greater than 1.0, thereby indicating altered ginsenoside composition in these root lines. The HPLC analysis of the MAR3-13 and MAR3-26 lines confirmed different ginsenoside profiles, including the three unidentified ginsenoside candidates, Gm1, Gm2, and Gm3. The ginsenosides of the MAR3-13 and MAR3-26 lines showed high hydroxyl and superoxide radical scavenging activities.  相似文献   

16.
Quantitative comparison of seven ginsenosides in wild and cultivated American ginseng revealed that the Rg1/Rd ratio presented a significantly large difference between cultivated and type‐I (one of the defined chemotypes) wild American ginseng, facilitating this ratio as a characteristic marker for differentiating these two groups. Similarly, the ratio (Rg1+Re)/Rd, and the ratio of protopanaxatriol (PPT)‐type ginsenosides to protopanaxadiol (PPD)‐type ginsenosides showed a large difference between these two groups. On the other hand, type‐II wild samples were found to have high Rg1/Rb1 and Rg1/Re ratios and low panaxydol/panaxynol ratio, which is entirely different from Type‐I American ginseng, but is very similar to that of Asian ginseng. This not only suggests that the chemotype should be taken into consideration properly when using these parameters for differentiating American and Asian ginseng, but also indicates that type‐II wild American ginseng may have distinct pharmacological activities and therapeutic effects.  相似文献   

17.
A new β-glucosidase gene (bglSp) was cloned from the ginsenoside converting Sphingomonas sp. strain 2F2 isolated from the ginseng cultivating filed. The bglSp consisted of 1344 bp (447 amino acid residues) with a predicted molecular mass of 49,399 Da. A BLAST search using the bglSp sequence revealed significant homology to that of glycoside hydrolase superfamily 1. This enzyme was overexpressed in Escherichia coli BL21 (DE3) using a pET21-MBP (TEV) vector system. Overexpressed recombinant enzymes which could convert the ginsenosides Rb1, Rb2, Rc and Rd to the more pharmacological active rare ginsenosides gypenoside XVII, ginsenoside C-O, ginsenoside C-Mc1 and ginsenoside F2, respectively, were purified by two steps with Amylose-affinity and DEAE-Cellulose chromatography and characterized. The kinetic parameters for β-glucosidase showed the apparent Km and Vmax values of 2.9 ± 0.3 mM and 515.4 ± 38.3 μmol min−1 mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside. The enzyme could hydrolyze the outer C3 glucose moieties of ginsenosides Rb1, Rb2, Rc and Rd into the rare ginsenosides Gyp XVII, C-O, C-Mc1 and F2 quickly at optimal conditions of pH 5.0 and 37 °C. A little ginsenoside F2 production from ginsenosides Gyp XVII, C-O, and C-Mc1 was observed for the lengthy enzyme reaction caused by the side ability of the enzyme.  相似文献   

18.
Lee JH  Choi S  Kim JH  Kim JK  Kim JI  Nah SY 《Neurochemical research》2003,28(9):1307-1313
We examined the effect of ginseng total saponins (GTS) on phosphoinositide metabolism stimulated by activation of muscarinic receptor using rat cortical cultures. Carbachol stimulated formation of [3H]inositol phosphates ([3H]InsPs) by 3.3-fold over basal level in [3H]inositol-prelabeled cells. Pretreatment of GTS inhibited formation of [3H]InsPs evoked by carbachol by 70%–90%. Addition of GTS alone had no effect on the basal formation of [3H]InsPs. The inhibitory effect of the GTS on carbachol-stimulated formation of [3H]InsPs was dose- and time-dependent. IC50 was 6.0 ± 2.8 g/ml. We also examined the effect of GTS on [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation evoked by carbachol. Although GTS had no effect on the basal [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation, pretreatment of GTS inhibited [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation evoked by carbachol, respectively. Addition of individual ginsenosides such as ginsenoside Rb1, Rc, Rd, Re, or Rg2 had no effect on the basal formation of [3H]InsPs, whereas pretreatment of ginsenoside Rb2, Rc, Rd, Re, Rf, Rg1 or Rg2 inhibited formation of [3H]InsPs evoked by carbachol by 79%–89%. The results suggest that the inhibitory effect of GTS and its individual ginsenosides on carbachol-stimulated formation of [3H]InsPs in cortical neurons could be one pharmacological action of Panax ginseng.  相似文献   

19.
Under optimum conditions (pH 5, 75°C, and 0.2 U purified enzyme ml−1), 4 mg ginsenoside Rd was produced from 5 mg reagent-grade ginsenoside Rb1 in 5 ml after 30 min by β-glucosidase from Thermus caldophilus GK24. Using a ginseng root extract containing 1 mg ginsenoside Rb1 ml−1 and 3.2 mg additional ginsenosides ml−1, 1.23 mg ginsenoside Rd ml−1 was produced after 18 h; the concentrations of ginsenosides Rb1, Rb2, and Rc used for ginsenoside Rd production were 0.77, 0.17, and 0.19 mg ml−1, respectively.  相似文献   

20.
A novel β-glucosidase from Penicillium aculeatum was purified as a single 110.5-kDa band on SDS–PAGE with a specific activity of 75.4 U?mg?1 by salt precipitation and Hi-Trap Q HP and Resource Q ion exchange chromatographies. The purified enzyme was identified as a member of the glycoside hydrolase 3 family based on its amino acid sequence. The hydrolysis activity for p-nitrophenyl-β-d-glucopyranoside was optimal at pH 4.5 and 70 °C with a half-life of 55 h. The enzyme hydrolyzed exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides. Because of the novel specificity, this enzyme had the transformation pathways for ginsenosides: Rb1?→?Rd?→?F2?→?compound K, Rb2?→?compound O?→?compound Y, Rc?→?compound Mc1?→?compound Mc, Rg3?→?Rh2?→?aglycone protopanaxadiol (APPD), Rg1?→?F1, and Rf?→?Rh1?→?aglycone protopanaxatriol (APPT). Under the optimum conditions, the enzyme converted 0.5 mM Rb2, Rc, Rd, Rg3, Rg1, and Rf to 0.49 mM compound Y, 0.49 mM compound Mc, 0.47 mM compound K, 0.23 mM APPD, 0.49 mM?F1, and 0.44 mM APPT after 6 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号