首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhythmicity in ethylene production in cotton seedlings   总被引:7,自引:3,他引:4       下载免费PDF全文
Cotyledons of cotton (Gossypium hirsutum L.) seedlings grown under a photoperiod of 12 hour darkness and 12 hour light showed daily oscillations in ethylene evolution. The rate of ethylene evolution began to increase toward the end of the dark period and reached a maximum rate during the first third of the light period, then it declined and remained low until shortly before the end of the dark period. The oscillations in ethylene evolution occurred in young, mature, and old cotyledons (7 to 21 day old). These oscillations in ethylene evolution seemed to be endogenously controlled since they continued even when the photoperiod was inverted. Moreover, in continuous light the oscillations in ethylene evolution persisted, but with shorter intervals between the maximal points of ethylene evolution. In continuous darkness the oscillations in ethylene evolution disappeared. The conversion of [3,4-14C]methionine into [14C] ethylene followed the oscillations in ethylene evolution in the regular as well as the inverted photoperiod. On the other hand, the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene did not follow the oscillations in ethylene evolution, but was affected directly by the light conditions. Always, light decreased and darkness increased the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene. It is concluded that in the biosynthetic pathway of ethylene the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene is directly affected by light while an earlier step is controlled by an endogenous rhythm.  相似文献   

2.
Nodulated soybean roots produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid than uninoculated roots. Nodules produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid per gram of material than roots. Almost all of the ethylene produced by the nodules was produced by the plant fractions of the nodules. Ethylene, at physiological concentrations, did not inhibit nodulation in soybeans.  相似文献   

3.
We studied changes in the intensity of ethylene release and accumulation of 1-aminocyclopropane-1-carboxylic acid during ripening of two apple varieties characterized by various physiological states and treated with halothane derivatives and L-alpha-(2-aminoethoxyvinyl)-glycine. We observed changes in activity of the protein polygalacturonase inhibitor in the fruit tissue and accumulation of oligouronides. The data suggest that pretreatment with the inhibitor of 1-aminocyclopropane-1-carboxylic acid synthase affects ethylene release, accumulation of 1-aminocyclopropane-1-carboxylic acid, activity of the protein polygalacturonase inhibitor, and potential intensity of oligouronide formation in apple fruits and tissues.  相似文献   

4.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

5.
Coronatine is a toxin produced by Pseudomonas syringae pv. glycinea which induces the same chlorotic response in bean leaves as does infection by the bacterial pathogen. Although the structure of coronatine is known, the biological mode of action is not. One possible clue to its activity is the ethyl-substituted cyclopropane side chain of the molecule. This part structure (1-amino-2-ethycyclopropane-1-carboxylic acid or AEC) is an analog of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC).  相似文献   

6.
Primary pulvini of Mimosa pudica L. displaced from their position display gravitropic movements beginning about 15 minutes after their reorientation. Ethephon, an ethylene-releasing compound, and 1-aminocyclopropane-1-carboxylic acid, an intermediate in ethylene biosynthesis, enhance these movements at a concentration as low as 10 nanomolar. Inhibitors of ethylene synthesis (l-α-(2-aminoethoxyvinyl)glycine, (aminooxy)acetic acid, and Co2+) reduce the amplitude of the movements. The promotive action of 1-aminocyclopropane-1-carboxylic acid is abolished by l-α-(2-aminoethoxyvinyl)glycine. These results permit one to conclude that ethylene may modify the curvature movement but not the initiation of the gravitropic reaction. With reference to the pulvinus functioning based on turgor variations and ion migrations inside the organ, namely K+ acting as the osmoticum, the data suggest that ethylene may act by increasing the membrane permeability to water and/or by altering an ion pump.  相似文献   

7.
We studied changes in the intensity of ethylene release and accumulation of 1-aminocyclopropane-1-carboxylic acid during ripening of two apple cultivars, differing in their physiological state, following treatment with haloethane derivatives or L--(2-aminoethoxyvinyl)-glycine. This changed both the activity of the protein polygalacturonase inhibitor in the fruit tissue and the accumulation of oligouronides. The data suggest that pretreatment with an inhibitor of 1-aminocyclopropane-1-carboxylic acid synthase affects ethylene release, accumulation of 1-aminocyclopropane-1-carboxylic acid, the activity of the protein polygalacturonase inhibitor, and the potential intensity of oligouronide formation in apple fruits and tissues.  相似文献   

8.
A 60-fold increase in ethylene content was observed in stem cuttings of chrysanthemum (Chrysanthemum × morifolium Ramat.) held in aero-hydroponics under anoxic conditions during the 8 to 12 days necessary for adventitious root formation. Ethylene, 1-aminocyclopropane-1-carboxylic acid, and 10-(malonylamino) cyclopropane-1-carboxylic acid contents were highest in the immersed portion of the cuttings, but there was substantial ethylene produced by the anoxic, misted portions of the cutting above the liquid. Application of ethylene (10 microliters per liter) to chrysanthemum cuttings stimulated root development in cuttings held in high dissolved oxygen concentrations (8.0 milligrams per liter). Since the application of ethylene did not inhibit rooting in cuttings held at low dissolved oxygen concentrations (2.0 milligrams per liter), the inhibition of rooting under low oxygen concentrations is not mediated by the observed increase in endogenous ethylene content.  相似文献   

9.
The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity.  相似文献   

10.
An ethylene-forming enzyme from Citrus unshiu fruits was purified some 630-fold. The enzyme catalysed ethylene formation from 1-aminocyclopropane-1-carboxylic acid in the presence of pyridoxal phosphate, β-indoleacetic acid, Mn2+ and 2,4-dichlorophenol. It behaved as a protein of MW 40 000 on Sephacryl S-200 gel filtration, and gave one band corresponding to a MW of 25 000 on SDS-PAGE. It had a specific activity of 0.025 μmol/min·mg protein. It exhibited IAA oxidase activity and had no guaiacol peroxidase or NADH oxidase activity. Its Km for ACC was 2.8 mM, and its pH optimum was 5.7. It was inhibited by potassium cyanide n-propyl gallate and Tiron. d-Mannose, histidine, iodoacetate, PCMB, dimethylfuran and superoxide dismutase showed no inhibition. β-Indoleacrylic acid against IAA competitively inhibited ethylene formation. Other IAA analogues, such as β-indolepropionic acid, β-indolecarboxylic acid and β-indolebutylic acid, slightly stimulated ethylene formation. β-Indoleacrylic acid against 1-aminocyclopropane-1-carboxylic acid non-competitively inhibited ethylene formation. Ascorbate was a potent inhibitor. The inhibitory effects, however, were not always reproduced in vivo. It is difficult to identify this enzyme system as a natural in vivo system from the above observations. Nevertheless, the possible in vivo participation of this in vitro enzyme system is discussed.  相似文献   

11.
The role of ethylene in microspore embryogenesis and regeneration was analyzed by studying the effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and the ethylene antagonists silver nitrate and silver thiosulphate on the androgenic response of in vitro cultured anthers of seven genotypes of barley. Incorporation of either ACC or silver salts in the culture medium lead to a significant increase in callus induction for five of the seven genotypes tested. The treatment that increased callus induction depended upon genotype. Only anthers cultured on 1 mg l–1 silver thiosulphate gave rise to fertile plants in all seven genotypes tested.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole acetic acid - PAA phenyl acetic acid - STS silver thiosulphate - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

12.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

13.
A Papaver somniferum cell line capable of producing sanguinarine equivalent to 3% of cell dry weight was used to determine if ethylene was involved in signalling the biosynthesis of this alkaloid. A 3.3-fold increase in ethylene emanation from these cell suspension cultures was observed 7 h after elicitation with a Botrytis fungal homogenate. The rate of ethylene release then decreased to near zero after 48 h, suggesting that a pulse of ethylene production may be involved in sanguinarine production. However, sanguinarine biosynthesis was not promoted when either the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), or the ethylene releasing agent, 2-chloroethylphosphonic acid (ethephon), was added to the culture. These results strongly suggest that ethylene is not intimately involved in the production of sanguinarine from Papaver somniferum cell cultures or in the transduction of the elicitation event.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

14.
Salicylic acid: A new inhibitor of ethylene biosynthesis   总被引:17,自引:0,他引:17  
Salicylic acid and acetylsalicylic acid at concentrations of 10–6M to 10–4M effectively inhibit ethylene production by pear cell suspension cultures. Results suggest these acids act by blocking the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene.Abbreviations ACC 1 aminocyclopropane-1-carboxylic acid - ASA acetylsalicylic acid - 2,4-D 2,4-dinitrophenoxyacetic acid - DMSO dimethyl sulfoxide - IAA indole acetic acid - SA salicylic acid  相似文献   

15.
Ethylene biosynthesis and polyamine content were determined in [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol] (paclobutrazol) pre-treated and non-treated water-stressed apple seedling leaves. Paclobutrazol reduced water loss, and decreased endogenous putrescine spermidine content. Gibberellic acid (GA) counteracted the inhibitory effect of paclobutrazol on polyamine content. Paclobutrazol also prevented accumulation of water stress-induced 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), ethylene production and polyamines in apple leaves. α-Difluoromethylarginine (DFMA), but not α-difluoromethylornithine (DFMO), inhibited the rise of putrescine and spermidine in stressed leaves. S-Adenosylmethionine (SAM) was maintained at a steady state level even when ethylene and the polyamines were actively synthesized in stressed apple seedling leaves. The conversion of ACC to ethylene did not appear to be affected by paclobutrazol treatment.  相似文献   

16.
Intact etiolated bean (Phaseolus vulgaris L. cv. Limburgse vroege) seedlings were illuminated with red light (10.5 W·m-2) for 10 min. After different time intervals ethylene production, and contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-1-carboxylic acid were measured. The red-light-induced decrease of ethylene production in 8-d-old intact etiolated bean seedlings was fast, strong and long-lasting ad was mediated through the phytochrome system. This effect appeared to be strictly age-dependent, as it could not be detected in plants younger than 6 d or older than 11 d.The capacity for the conversion of ACC to ethylene was not affected by red light. The inhibitory effect of the light treatment on ethylene production could be related to a reduced free-ACC content. This reduction was a consequence of a temporary non-reversible increase of ACC malonylation and a long-lasting, for a certain time reversible, inhibition of ACC synthesis. The effect of a brief irradiation with red light on the decrease of ethylene production and free-ACC content was completed after about 2 h. Reversibility by far-red, however, persisted for at least 3 h, and was lost between 3 and 6 h.Abbrevation ACC 1-aminocyclopropane-1-carboxylic acid - M-ACC 1-(malonylamino)cyclopropane-1-carboxylic acid  相似文献   

17.
Ethylene accumulation in four different rose in vitro culture containers was evaluated. Multiplication rate was the highest, and axes most elongated, in the two containers where ethylene accumulation was limited. Pulse treatments of ethylene at various concentrations enhanced proliferation depending on concentration (5 ppm generally was the most favourable) and time of application, while reducing elongation of the shoots. An ethylene trap in the flask atmospheres of the cultures reduced rose shoot proliferation rate but increased elongation of the axes. Inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (CoCl2), increased multiplication rate by providing a higher number of axes of a suitable size for subculture. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) had a beneficial effect on multiplication rate, although reducing longitudinal growth of the axes.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - BA benzyladenine - GA3 gibberellic acid - IBA indolyl-3-butyric acid  相似文献   

18.
Ethylene production was stimulated severalfold during the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV). Exogenous methionine or S-adenosylmethionine (SAM) did not increase ethylene evolution from healthy or TMV-infected leaf discs, although both precursors were directly available for ethylene production. This indicates that ethylene production is not controlled at the level of methionine concentration or availability, nor at the level of SAM production or concentration. In contrast, 1-aminocyclopropane-1-carboxylic acid (ACC) stimulated ethylene production considerably. Thus, ethylene production is primarily limited at the level of ACC production.  相似文献   

19.
Evidence was obtained to support the hypothesis that ethylene is involved in xylem differentiation in primary pith explants of Lactuca sativa L. cv Romaine cultured in vitro. Xylem elements differentiated when explants were supplied indole-3-acetic acid (IAA) in combination with either the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene-releasing agent 2-chloroethylphosphonic acid (CEPA), or kinetin. In contrast, no xylem elements differentiated in the presence of IAA, kinetin, ACC, or CEPA alone, or when kinetin was supplied together with ACC or CEPA. These results show that ethylene will substitute qualitatively for cytokinin during auxin-induced xylogenesis, and suggest that both ethylene and auxin are required for xylem differentiation in Lactuca.  相似文献   

20.
Yu YB  Adams DO  Yang SF 《Plant physiology》1979,63(3):589-590
Ethylene production in mung bean hypocotyls was greatly increased by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), which was utilized as the ethylene precursor. Unlike auxin-stimulated ethylene production, ACC-dependent ethylene production was not inhibited by aminoethoxyvinylglycine, which is known to inhibit the conversion of S-adenosylmethionine to ACC. While the conversion of methionine to ethylene requires induction by auxin, the conversion of methionine to S-adenosylmethionine and the conversion of ACC to ethylene do not. It is proposed that the conversion of S-adenosylmethionine to ACC is the rate-limiting step in the biosynthesis of ethylene, and that auxin stimulates ethylene production by inducing the synthesis of the enzyme involved in this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号