首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in levels of metabolites in isolated spinach (Spinacia oleracea) chloroplasts seen upon addition of antimycin A suggest that the activities of enzymes mediating several regulated reactions are affected. Apparently, the presence of added antimycin A does not increase the level of CO2 in the chloroplasts, nor does it stimulate CO2 fixation by increasing the level of the carboxylation substrate, ribulose-1,5-diphosphate. Rather, it appears that antimycin A increases CO2 fixation rate by indirectly stimulating the enzyme, ribulose-1,5-diphosphate carboxylase (E.C. 4.1.1.39), which mediates the carboxylation of ribulose-1,5-diphosphate to give 3-phosphoglycerate. Another rate-limiting enzyme of the reductive pentose phosphate cycle, hexose diphosphatase (E.C. 3.1.3.11), seems also to be stimulated. The synthesis of polysaccharides (mostly starch) seems also to be stimulated. These results are interpreted as indicating that antimycin A addition enhances the general activation of those enzymes which already are activated during photosynthesis but are inactive in the dark. The ratio of adenosine triphosphate-adenosine diphosphate under conditions of photosynthesis was only moderately decreased in the presence of antimycin A, perhaps accounting in part for an observed increase in accumulation of 3-phosphoglycerate as compared with dihydroxyacetone phosphate. No significant effect on movement of metabolites from the chloroplast to the medium was seen.  相似文献   

2.
Effect of antimycin a on photosynthesis of intact spinach chloroplasts   总被引:1,自引:1,他引:0  
Low concentrations (0.5-10 μm) of antimycin A were shown to increase the rate of CO2 fixation, O2 evolution and inorganic phosphate esterification in intact spinach (Spinacia oleracea) chloroplasts. The increase was highest when the light intensity was saturating. Stimulation was independent of the bicarbonate concentration and was accompanied by an enhancement in the synthesis of glycerate 3-phosphate with a decrease in dihydroxyacetone phosphate. The antibiotic decreased the Michaelis constant of the chloroplast but not of ribulose 1,5-diphosphate carboxylase for bicarbonate. It was suggested that antimycin A is affecting that portion (outer envelope) of the intact chloroplast which contains the enzyme mechanism for controlling the pace of CO2 fixation.  相似文献   

3.
When envelope-free spinach chloroplasts are incubated with stromal protein, catalytic NADP, catalytic ADP, radioactive bicarbonate and fructose 1,6-bisphosphate, 14CO2 fixation starts immediately upon illumination but oxygen evolution is delayed. The delay is increased by the addition of fructose 6-phosphate and by a variety of factors known (or believed) to increase fructose bisphosphatase activity (such as dithiothreitol, more alkaline pH, higher [Mg] and antimycin A). Conversely, the lag can be decreased or eliminated by the addition of an ATP-generating system. Bearing in mind the known inhibition, by ADP, of sn-phospho-3-glycerate (3-phosphoglycerate) reduction it is concluded that the lag in O2 evolution results from the production of ribulose 5-phosphate from fructose bisphosphate and that this in turn inhibits the reoxidation of NADPH by adversely affecting the ADP/ATP ratio. The results are discussed in their relation to the mode of action of antimycin A and to regulation of the reductive pentose phosphate pathway.  相似文献   

4.
Laing WA 《Plant physiology》1974,54(5):678-685
Kinetic properties of soybean net photosynthetic CO2 fixation and of the carboxylase and oxygenase activities of purified soybean (Glycine max [L.] Merr.) ribulose 1, 5-diphosphate carboxylase (EC 4.1.1.39) were examined as functions of temperature, CO2 concentration, and O2 concentration. With leaves, O2 inhibition of net photosynthetic CO2 fixation increased when the ambient leaf temperature was increased. The increased inhibition of CO2 fixation at higher temperatures was caused by a reduced affinity of the leaf for CO2 and an increased affinity of the leaf for O2. With purified ribulose 1,5-diphosphate carboxylase, O2 inhibition of CO2 incorporation and the ratio of oxygenase activity to carboxylase activity increased with increased temperature. The increased O2 sensitivity of the enzyme at higher temperature was caused by a reduced affinity of the enzyme for CO2 and a slightly increased affinity of the enzyme for O2. The similarity of the effect of temperature on the affinity of intact leaves and of ribulose 1,5-diphosphate carboxylase for CO2 and O2 provides further evidence that the carboxylase regulates the O2 response of photosynthetic CO2 fixation in soybean leaves. Based on results reported here and in the literature, a scheme outlining the stoichiometry between CO2 and O2 fixation in vivo is proposed.  相似文献   

5.
CO2 fixation by a suspension of isolated spinach chloroplasts was terminated by turning off the light, and changes of metabolite levels in the chloroplast stroma and the surrounding medium were assayed. Whereas CO2 fixation comes to a total stop within 15 seconds, a conversion of triose phosphates to heptose, hexose, and pentose monophosphates is found to occur for 1 to 2 minutes afterwards. It seems from these data that an inactivation of fructose and sedoheptulose bisphosphatases proceeds with a lag period. In contrast, the conversion of pentose monophosphates to ribulose 1,5-bisphosphate is inhibited immediately after the stop of illumination. As the stromal level of freely available ATP was not depleted under this condition, these data demonstrate that ribulose 5-phosphate kinase was very rapidly inactivated after darkening of the chloroplasts. Essentially, the same effect is also observed when CO2 fixation is partially inhibited by addition of moderate concentrations of m-chlorocarbonyl phenylhydrazone, partially uncoupling photophosphorylation. It appears from these results, that the activity of ribulose 5-phosphate kinase is not only regulated by light through the mediation of reduced carriers like thioredoxin but also by alternative parameters, e.g. stromal metabolite levels.  相似文献   

6.
Urease and ribulose 1, 5-diphosphate carboxylase can be bound to Sepharose to give an immobilized two-enzyme system which catalyzes the reaction urea → H2CO3 → phosphoglyceric acid. The observed Km of the system for urea approaches the lower value for urease when carboxylase levels on the gel exceed urease levels. If a similar system operates in the chloroplast, the high Km (H2CO3) of ribulose 1,5-diphosphate carboxylase may not be metabolically significant.  相似文献   

7.
Avron M  Gibbs M 《Plant physiology》1974,53(2):140-143
Factors affecting CO2 fixation in the spinach (Spinacia oleracea) chloroplast were investigated. Free magnesium ions are shown to be highly inhibitory for photosynthetic CO2 fixation in isolated intact spinach chloroplasts. The pH optimum for CO2 fixation is about 8.5 but is dependent upon the reaction medium. Conditions are defined under which chloroplasts illuminated in the absence of CO2 accumulate ribulose 1,5-diphosphate, and fix CO2 in a subsequent dark period when high magnesium ion concentrations are provided. The regulation of photosynthetic CO2 assimilation by these factors is discussed.  相似文献   

8.
Huber SC 《Plant physiology》1979,63(4):754-757
Millimolar concentrations of Mg2+ inhibited CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts and also prevented the activation of NADP-glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-phosphate kinase, and fructose-1,6-diphosphatase by light in intact chloroplasts. When added in the dark, 3-phosphoglycerate prevented the inhibition of O2 evolution by Mg2+ and reduced the Mg2+ inhibition of enzyme activation by light. Fructose 1,6-diphosphate and ribulose 5-phosphate also prevented the inhibition of O2 evolution by Mg2+ whereas glucose 1-phosphate, glucose 6-phosphate, ribulose 1,5-diphosphate, and citrate had no effect. Phosphoenolpyruvate gave an intermediate response. Metabolites that prevented the Mg2+ inhibition of O2 evolution shortened the lag phase of CO2-dependent O2 evolution in the absence of M2+. Loading chloroplasts in the dark with 3-phosphoglycerate reduced both the lag phase of O2 evolution and the inhibition of O2 evolution by Mg2+. The results suggested that Mg2+ inhibition was lessened either by external metabolites that compete with inorganic phosphate for transport into the chloroplast or by a high concentration of internal metabolites.  相似文献   

9.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

10.
The pathway of carbon assimilation in greening roots was compared to the pathway in leaves of Lens culinaris seedlings by means of labelling distribution analysis among the products of 14CO2 fixation in vivo, and in vitro with ribulose 1,5-diphosphate as the substrate. In green leaves, CO2 fixation via ribulose 1,5-diphosphate carboxylase predominated largely while, in green roots, this carboxylase activity and the phosphoenolpyruvate carboxylase contributed almost equally to the whole in vivo CO2 fixation. A participation of the activities of both carboxylases according to the double carboxylation pathway in the synthesis of dicarboxylic acids (malate and aspartate) was demonstrated in vitro after 48 h of greening in roots but seemed to be absent in in vivo experiments.  相似文献   

11.
Woo KC 《Plant physiology》1983,72(2):313-320
This study examines the effect of antimycin A and nitrite on 14CO2 fixation in intact chloroplasts isolated from spinach (Spinacia oleracea L.) leaves. Antimycin A (2 micromolar) strongly inhibited CO2 fixation but did not appear to inhibit or uncouple linear electron transport in intact chloroplasts. The addition of small quantities (40-100 micromolar) of nitrite or oxaloacetate, but not NH4Cl, in the presence of antimycin A restored photosynthesis. Antimycin A inhibition, and the subsequent restoration of photosynthetic activities by nitrite or oxaloacetate, was observed over a wide range of CO2 concentration, light intensity, and temperature. High O2 concentration (up to 240 micromolar) did not appear to influence the extent of the inhibition by antimycin A, nor the subsequent restoration of photosynthetic activity by nitrite or oxaloacetate. Studies of O2 exchanges during photosynthesis in cells and chloroplasts indicated that 2 micromolar antimycin A stimulated O2 uptake by about 25% while net O2 evolution was inhibited by 76%. O2 uptake in chloroplasts in the presence of 2 micromolar antimycin A was 67% of total O2 evolution. These results suggest that only a small proportion of the O2 uptake measured was directly linked to ATP generation. The above evidence indicates that cyclic photophosphorylation is the predominant energy-balancing reaction during photosynthesis in intact chloroplasts. On the other hand, pseudocyclic O2 uptake appears to play only a minimal role.  相似文献   

12.
The net carbon incorporation in maize (Zea mays) and tomato (Lycopersicum esculentum) leaves was mainly the result of the carboxylation of ribulose 1,5-diphosphate. In both of these organisms synthesis of glycerate 3-phosphate was studied during short chase experiments (2 or 3 seconds in 14CO2 then 8 to 27 seconds in unlabeled CO2). Changes in the radioactivity in the individual carbon atoms of glycerate 3-phosphate, malate, and aspartate are consistent with the formation, in both leaves, of 2 molecules of glycerate 3-phosphate for each CO2 molecule incorporated. The CO2, before reacting with ribulose 1,5-diphosphate, is first incorporated in an intracellular CO2 pool which has a different composition according to the species. This pool is constituted in tomato by volatile compounds (50 nanomoles per gram of fresh weight) more or less in equilibrium with atmospheric CO2. In maize the pool consists of carbon atoms 4 of malate and aspartate (for at least 80% of the pool) and volatile compounds which correspond, in all, to 540 nanomoles per gram of fresh weight where atmospheric CO2 enters through an irreversible reaction.  相似文献   

13.
The carboxylation of ribulose-1,5-diphosphate was demonstrated in vitro with extracts of ctiolated seedling roots. The presence of ribulose-1,5-diphosphate carboxylase was characterized in the subcellular fraction enriched in amyloplasts. Synthesis of chlorophyll, development of CO2 fixation capacities and of Hill activity upon illumination have been studied with roots of Lens culinaris seedlings. The marked increases in CO2 fixation with ribulose-1,5-diphosphate as the substrate and in Hill activity that occur after a lag phase seem to be related to cytological changes during the greening of roots.  相似文献   

14.
Antimycin A, which stimulates the Co2 fixation activity of isolated intact spinach (Spinacia oleracea L) chloroplasts, was shown to stimulate also the oxygen evolution in the presence of oxaloacetate, as do the uncouplers. Some uncoupers (tetramethlethylenediamine, Nh4CL) were shown to stimulate the CO2 fixation activity, and to decrease the intrachloroplastic ATP levels, like antimycin A. The intrachloroplastic NADPH levels were not affected by the inhibitors studied.  相似文献   

15.
Latzko E  Gibbs M 《Plant physiology》1969,44(2):295-300
Profile analyses of the enzymes comprising the photosynthetic carbon reduction cycle have been performed in extracts of dark grown and greening Euglena gracilis var. bacillaris. Chlorella pyrenoidosa grown photoautotrophically, in the light with glucose or in the dark with glucose, Tolypothrix tenuis, Chromatium and leaves of spinach. Amounts of activity are compared with the level of photosynthetic CO2 fixation. Only in Chromatium were all enzyme activities sufficient to support the in vivo rate of CO2 fixation. In organisms other than Chromatium, some enzymes and particularly fructose 1,6-phosphatase and ribulose 1.5-diphosphate carboxylase appeared to be present in insufficient amounts to support the photosynthetic rate of the intact cell. Developmental studies with Euglena and growth studies with Chlorella led to the conclusion that these enzymes were associated with the cycle. Suppression of CO2 fixation in heterotrophically grown Chlorella was accompanied by a striking decrease in the same enzymes whose activities increased in greening Euglena.  相似文献   

16.
The response of several leaf gas exchange parameters were monitored with decreasing leaf water potential in Phaseolus vulgaris L. leaflets. These included photosynthesis, transpiration, CO2 compensation point, ribulose 1,5-diphosphate carboxylase activity, boundary layer plus stomatal, and mesophyll resistance to diffusion of CO2. Mesophyll resistance was calculated under two assumptions: (a) the CO2 concentration at the chloroplast was zero, and (b) it was equal to the CO2 compensation point.  相似文献   

17.
The growth of the halotolerant cyanobacterium Aphanothece halophytica, previously adapted to 0.5 molar NaCl, was optimal when NaCl concentration in culture medium was in the range 0.5 to 1.0 molar. The growth was delayed at either too low or too high salinities with lag time of ca. 0.5 day in 0.25 molar NaCl and ca. 2 days in 2 molar NaCl under the experimental conditions. However, the growth rates at the logarithmic phase were similar in the culture media containing NaCl in the range 0.25 to 2.0 molar. The capacity of photosynthetic CO2 fixation increased 3.7-fold in the cells at the logarithmic phase as NaCl concentration in the culture medium increased from 0.25 to 2.0 molar. The protein level of ribulose 1,5-bisphosphate carboxylase/oxygenase was also found to increase with increasing salinity using both an immunoblotting method and protein A-gold immunoelectron microscopy. These results indicate that high photosynthetic capacity and high ribulose 1,5-bisphosphate carboxylase/oxygenase content may entail an important role in betaine synthesis and adaptation of the A. halophytica cells to high NaCl level.  相似文献   

18.
Chen C  Gibbs M 《Plant physiology》1992,100(3):1361-1365
The oxyhydrogen reaction (the reduction of O2 to water by H2) in the presence of CO2 was studied in the isolated Chlamydomonas reinhardtii chloroplast by monitoring the rate of 14CO2 incorporation into acid-stable products in the dark. The endogenous rate of CO2 uptake (50-125 nmol/mg chlorophyll per h) was increased about 3- to 4-fold by ATP and additionally when combined with glucose, ribose-5-phosphate, and glycerate-3-phosphate. The rate was diminished 50 to 75%, respectively, when H2 was replaced by N2 or by air. Decrease in CO2 uptake by dl-glyceraldehyde was taken to indicate that the regenerative phase and complete Calvin cycle turnover were involved. Diminution of CO2 incorporation by rotenone, antimycin A, and 2,5-dibromo-3-methyl-6-isopropanol-p-benzoquinone was attributed to an inhibition of the oxyhydrogen reaction, resulting in an elevated NADPH/NADP ratio. If so, then the diminished CO2 uptake could have been by “product inhibition” of the carbon metabolic network. Our data are consistent with the proposal (H. Gaffron [1942] J Gen Physiol 26: 241-267) that CO2 fixation coupled to the oxyhydrogen reaction is dependent to some extent on exchloroplastic metabolism. This support is primarily ATP provided by mitochondrial respiration.  相似文献   

19.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

20.
Chloroplasts in living cells of detached and sectioned leaves of Pisum sativum had a thickness of 2.68 ± 0.04 μ in the dark as determined from photographs made using a phase contrast microscope. Upon illumination with 4000 lux for 10 min, the chloroplasts flattened to 2.15 ± 0.04 μ. There was a short lag period of about 11 sec at 1000 lux and 2 sec at 4000 lux before appreciable light-induced flattening occurred. Both ATP and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in detached pea leaves increased upon illumination and then fell during the initial 60 sec. The maximum ATP level was attained in 16 sec at 1000 lux and 10 sec at 4000 lux, while NADPH required about twice as long to reach a maximum. A sustained rate of carbon dioxide fixation occurred after a lag period coinciding in time with the drop in the NADPH level. ATP appeared to be involved not only with carbon dioxide fixation, but also with some reaction beginning sooner, perhaps the light-induced chloroplast flattening. Considering the initial photophosphorylation and the sustained CO2 fixation rates, the ATP formation rate in vivo apparently increased after the leaves had been in the light for a few min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号