首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic spines are highly specialized actin-rich structures on which the majority of excitatory synapses are formed in the mammalian CNS. SPIN90 is an actin-binding protein known to be highly enriched in postsynaptic densities (PSDs), though little is known about its function there. Here, we show that SPIN90 is a novel binding partner for Shank proteins in the PSD. SPIN90 and Shank co-immunoprecipitate from brain lysates and co-localize in postsynaptic dendrites and act synergistically to mediate spine maturation and spine head enlargement. At the same time, SPIN90 causes accumulation of Shank and PSD-95 within dendritic spines. In addition, we found that the protein composition of PSDs in SPIN90 knockout mice is altered as is the actin cytoskeleton of cultured hippocampal SPIN90 knockout neurons. Taken together, these findings demonstrate that SPIN90 is a Shank1b binding partner and a key contributor to the regulation of dendritic spine morphogenesis and brain function.  相似文献   

2.
Ryu J  Liu L  Wong TP  Wu DC  Burette A  Weinberg R  Wang YT  Sheng M 《Neuron》2006,49(2):175-182
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.  相似文献   

3.
Exposure to chronic drugs of abuse has been reported to produce significant changes in postsynaptic protein profile, dendritic spine morphology and synaptic transmission. In the present study we demonstrate alterations in dendritic spine morphology in the frontal cortex and nucleus accumbens of mice following chronic morphine treatment as well as during abstinence for two months. Such alterations were accompanied with significant upregulation of the postsynaptic protein Shank1 in synaptosomal enriched fractions. mRNA levels of Shank1 was also markedly increased during morphine treatment and during withdrawal. Studies of the different postsynaptic proteins at the protein and mRNA levels showed significant alterations in the morphine treated groups compared to that of saline treated controls. Taken together, these observations suggest that Shank1 may have an important role in the regulation of spine morphology induced by chronic morphine leading to addiction.  相似文献   

4.
Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP   总被引:16,自引:0,他引:16  
Pak DT  Yang S  Rudolph-Correia S  Kim E  Sheng M 《Neuron》2001,31(2):289-303
The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.  相似文献   

5.
The NMDA receptor regulates spine morphological plasticity by modulating Rho GTPases. However, the molecular mechanisms for NMDA receptor-mediated regulation of Rho GTPases remain elusive. In this study, we show that p250GAP, an NMDA receptor-associated RhoGAP, regulates spine morphogenesis by modulating RhoA activity. Knock-down of p250GAP increased spine width and elevated the endogenous RhoA activity in primary hippocampal neurons. The increased spine width by p250GAP knock-down was suppressed by the expression of a dominant-negative form of RhoA. Furthermore, p250GAP is involved in NMDA receptor-mediated RhoA activation. In response to NMDA receptor activation, exogenously expressed green fluorescent protein (GFP)-tagged p250GAP was redistributed. Thus, these data suggest that p250GAP plays an important role in NMDA receptor-mediated regulation of RhoA activity leading to spine morphological plasticity.  相似文献   

6.
Bae J  Sung BH  Cho IH  Kim SM  Song WK 《PloS one》2012,7(4):e34677

Background

Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family, and its overexpression is known to reduce cell motility and tumor metastasis. NESH is prominently expressed in the brain, but its function there remains unknown.

Methodology/Principal Findings

NESH was strongly expressed in the hippocampus and moderately expressed in the cerebral cortex, cerebellum and striatum, where it co-localized with the postsynaptic proteins PSD95, SPIN90 and F-actin in dendritic spines. Overexpression of NESH reduced numbers of mushroom-type spines and synapse density but increased thin, filopodia-like spines and had no effect on spine density. siRNA knockdown of NESH also reduced mushroom spine numbers and inhibited synapse formation but it increased spine density. The N-terminal region of NESH co-sedimented with filamentous actin (F-actin), which is an essential component of dendritic spines, suggesting this interaction is important for the maturation of dendritic spines.

Conclusions/Significance

NESH is a novel F-actin binding protein that likely plays important roles in the regulation of dendritic spine morphogenesis and synapse formation.  相似文献   

7.
The peripheral functions of hormones such as leptin, insulin and estrogens are well documented. An important and rapidly expanding field is demonstrating that as well as their peripheral actions, these hormones play an important role in modulating synaptic function and structure within the CNS. The hippocampus is a major mediator of spatial learning and memory and is also an area highly susceptible to epileptic seizure. As such, the hippocampus has been extensively studied with particular regard to synaptic plasticity, a process thought to be necessary for learning and memory. Modulators of hippocampal function are therefore of particular interest, not only as potential modulators of learning and memory processes, but also with regard to CNS driven diseases such as epilepsy. Hormones traditionally thought of as only having peripheral roles are now increasingly being shown to have an important role in modulating synaptic plasticity and dendritic morphology. Here we review recent findings demonstrating that a number of hormones are capable of modulating both these phenomena.  相似文献   

8.
The number of neurotransmitter receptors in the postsynaptic membrane and their functional coupling to intracellular signalling cascades are important determinants of synaptic strength--and hence potential targets for plasticity related modulation. In this context, Homer/Vesl proteins have gained particular interest for three main reasons: (i) they constitute part of the molecular scaffold at postsynaptic densities of excitatory synapses in the mammalian brain; (ii) they physically link type-I metabotropic glutamate receptors to the postsynaptic density and to inositol 1,4,5-triphosphate receptors in the subsynaptic endoplasmic reticulum; and (iii) Homer-1a, which has been categorized as an immediate early gene isoform, exerts dominant-negative activity, suggesting that it is involved in activity dependent rearrangements at synaptic junctions. Although these fundamental aspects have been reviewed previously by Xiao et al., this review will address primarily more recent studies on the regulation of Homer 1a expression and on the role of Homer/Vesl proteins in spine morphogenesis and receptor targeting and signalling.  相似文献   

9.
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.  相似文献   

10.
Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.  相似文献   

11.
Sala C 《Neuro-Signals》2002,11(4):213-223
Dendritic spines are discrete membrane protrusions from dendritic shafts where the large majority of excitatory synapses are located. Their highly heterogeneous morphology is thought to be the morphological basis for synaptic plasticity. Electron microscopy and time-lapse imaging studies have suggested that the shape and number of spines can change after long-term potentiation (LTP), although there is no evidence that morphological changes are necessary for LTP induction and maintenance. An increasing number of proteins have been found to be morphogens for dendritic spines and provide new insights into the molecular mechanisms regulating spine formation and morphology.  相似文献   

12.
Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.  相似文献   

13.
Recent studies provide insights into the mechanisms by which Abelson non-receptor tyrosine kinases relay information from axon guidance and growth factor receptors to promote cytoskeletal rearrangements in developing neurons. Abelson non-receptor tyrosine kinases are also found in mature synapses, where their activities are required for optimal synaptic function.  相似文献   

14.
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.  相似文献   

15.
Estrogen receptor (ER) ligands can modulate innate and adaptive immunity and hematopoiesis, which may explain the clear sex differences in immune responses during autoimmunity, infection or trauma. Dendritic cells (DC) are antigen presenting cells important for initiation of innate and adaptive immunity, as well as immune tolerance. DC progenitors and terminally differentiated DC express ER, indicating the ER ligands may regulate DC at multiple developmental and functional stages. Although there are profound differences in innate immunity between males and females or upon systemic imposition of sex hormones, studies are just beginning to link these differences to DC. Our and others studies demonstrate that estradiol and other ER ligands regulate the homeostasis of bone marrow myeloid and lymphoid progenitors of DC, as well as DC differentiation mediated by GM-CSF and Flt3 Ligand. Since DC have a brief lifespan, these data suggest that relatively short exposures to ER ligands in vivo will alter DC numbers and intrinsic functional capacity related to their developmental state. Studies in diverse experimental models also show that agonist and antagonist ER ligands modulate DC activation and production of inflammatory mediators. These findings have implications for human health and disease since they suggest that both DC development and functional capacity will be responsive to the physiological, pharmacological and environmental ER ligands to which an individual is exposed in vivo.  相似文献   

16.
17.
Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5–10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20–25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.  相似文献   

18.
Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged post-synaptic density (PSD) and serve as the primary post-synaptic location of the excitatory neurotransmission that underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle myosin IIB (MIIB) activity determines where spines form and whether they persist as filopodia-like spine precursors or mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in mushroom-shaped spines with an enlarged PSD.  相似文献   

19.
Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n = 6) or a high fat diet (HFD) (n = 12) for 12 weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n = 6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1 mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats.  相似文献   

20.
Shank is a recently described family of postsynaptic proteins that function as part of the NMDA receptor-associated PSD-95 complex (Naisbitt et al., 1999 [this issue of Neuron]). Here, we report that Shank proteins also bind to Homer. Homer proteins form multivalent complexes that bind proline-rich motifs in group 1 metabotropic glutamate receptors and inositol trisphosphate receptors, thereby coupling these receptors in a signaling complex. A single Homer-binding site is identified in Shank, and Shank and Homer coimmunoprecipitate from brain and colocalize at postsynaptic densities. Moreover, Shank clusters mGluR5 in heterologous cells in the presence of Homer and mediates the coclustering of Homer with PSD-95/GKAP. Thus, Shank may cross-link Homer and PSD-95 complexes in the PSD and play a role in the signaling mechanisms of both mGluRs and NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号