首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eaton WA 《Biophysical chemistry》2003,100(1-3):109-116
The 1949 paper by Linus Pauling et al. [Science 110 (1949) 543–548] describing the discovery of sickle cell anemia as the first molecular disease had a major impact on biology and medicine. Inspired by the scholarly works of John Edsall on the history of hemoglobin research, I present a brief retrospective analysis of Pauling's paper. This is followed by some personal recollections of Edsall and Pauling.  相似文献   

2.
Nanobiomechanics has recently been identified as an emerging field that can potentially make significant contributions in the study of human diseases. Research into biomechanics at the cellular and molecular levels of some human diseases has not only led to a better elucidation of the mechanisms behind disease progression, because diseased cells differ physically from healthy ones, but has also provided important knowledge in the fight against these diseases. This article highlights some of the cell and molecular biomechanics research carried out on human diseases such as malaria, sickle cell anemia and cancer and aims to provide further important insights into the pathophysiology of such diseases. It is hoped that this can lead to new methods of early detection, diagnosis and treatment.  相似文献   

3.
Sickle cell disease is a hereditary disorder that is characterized by the production of structurally abnormal hemoglobin molecules. Clinical manifestations depend upon the amount and types of abnormal hemoglobin present. This paper reviews the genetic and molecular basis of sickle hemoglobinopathies and thalassemias including sickle cell anemia, SC disease, sickle cell-Beta Thalassemia and sickle trait. The systemic and ocular manifestations of these diseases are presented. Treatment regimens pertaining to hyphema, proliferative retinopathy, vitreous hemorrhage and retinal detachment are also discussed.  相似文献   

4.
Within the past few years it has been noted that abnormal types of hemoglobin found in certain persons are associated with definite clinical disorders. At least four different varieties of sickle cell anemia are now recognized, three of them being heterozygous and one homozygous. When the gene for sickling is represented once, the person is asymptomatic and is said to have "sickle cell trait." However, when the sickle cell trait is present in combination with certain other hemoglobin abnormalities such as hemoglobin C or D or with thalassemia trait, symptomatic clinical disease results. The homozygous condition, in which two genes for hemoglobin C are present in the same person, has been observed in a few instances. A similar condition as regards hemoglobin D has not as yet been recognized.  相似文献   

5.
Intracameral tissue plasminogen activator (t-PA) application in a child with previously unrecognized sickle cell anemia, post-traumatic hyphema, thrombosis in trabecular mashwork and consecutive acute glaucoma showed positive results. Thirteen year-old boy, son of African father and Caucasian mother, was admitted to hospital, with symptoms of acute glaucoma and partial hyphema after right eye trauma. Visual acuity of affected eye was 0.5 and intraocular pressure (IOP) 46 mm Hg. Despite a common therapy three days later clinical condition of patient's right eye was getting worst. Visual acuity was only hand motion (HM) and IOP 53 mmHg. At this point rose suspicion of sickle cell disease (SCD) and decision about injecting t-PA (20 microg) into anterior chamber was made. Cytological examination of aqueous humor revealed 10% sickled erythrocytes. Hemoglobin electrophoresis discovered hemoglobin S so that diagnosis of SCD was confirmed. Intraocular application of t-PA showed excellent results in post-traumatic hyphema with trabecular mashwork thrombosis in the patient with sickle cell anemia. Two-years follow up confirmed permanent normalisation of IOP and visual acuity. Successful outcome with anterior chamber paracentesis and intracameral injection of t-PA is promising novel approach, which we recommend in treatment of post-traumatic hyphema in SCD.  相似文献   

6.
Epigenomic modifiers, such as histone deacetylase inhibitors, are compounds that regulate gene expression by interfering with the enzymatic machinery that maintains the proper chromatin structure of the nucleus. These compounds are at the forefront of novel therapeutic agents for the treatment of several diseases including cancer and genetic disorders such as beta-thalassemia and sickle cell disease. Here we review the current understanding of the mechanism of action of epigenomic modifiers in the treatment of beta-thalassemia and sickle cell anemia. We also discuss how the lessons learned from the study of the effects of these compounds on the beta-globin locus, one of the best characterized regions of the human genome, might contribute to the understanding of the mechanism of action of these same compounds in cancer, where the specific regions of the genome that are responsible for the pathophysiology of the disease are often poorly defined.  相似文献   

7.
The emerging evidence that the heart has the potential to regenerate, albeit not ideally, has stimulated considerable interest in the field of cardiac regenerative medicine. Several lines of research demonstrated that factor-based therapy is feasible and effective, whether it is used independently or as an adjunct to cell therapy. The ultimate goal of the factor-based approach is to improve the regenerating potential of the heart as a means to treat patients with cardiovascular disease. This article reviews recent approaches involving factor-based therapy for cardiac repair and regeneration including some of the advantages of this type of therapy as well as some of the hurdles that must be overcome before this therapeutic approach becomes a standard part of clinical medicine.  相似文献   

8.
诱导多能干细胞(i PS细胞)在小鼠和人上的成功获取,使干细胞领域的研究进入了一个崭新的时代。干细胞研究是再生医学的重要组成部分,研究干细胞的最终目的是应用干细胞治疗疾病,其在疾病模型建立、药物筛选、细胞移植等方面具有极大的应用潜力。i PSCs是由体细胞诱导分化而成的"多能细胞",具备和胚胎干细胞类似的功能,既解决了ESCs的伦理障碍,又为ESCs的获得提供了一条全新的途径,具有重要的理论和应用价值。i PS细胞不仅打破了道德理论的束缚,而且在再生医学、组织工程和药物发现及评价等方面具有积极的价值。神经系统遗传性疾病发病率居各系统遗传病之首,但其发病的分子机制仍不完全清楚,运用体细胞重编程技术建立的疾病特异性诱导多能干细胞模型将有助于揭示神经系统遗传性疾病的发病机理。近几年i PS细胞最新研究成果表明,利用疾病患者i PS细胞模型已逐渐应用于帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究。本文主要对i PSc的发展历程,避免病毒基因干扰诱导i PS细胞进行的优化,以及干细胞尤其是i PS细胞移植治疗帕金森病等神经系统疾病的现状及应用前景进行系统阐述与论证。  相似文献   

9.
The dominant assumption central to most treatments for sickle cell anemia has been that replacement of sickle hemoglobin (HbS) by fetal hemoglobin (HbF) would have major clinical benefit. Using laser photolysis, we have measured polymerization kinetics including rates of homogeneous and heterogeneous nucleation on mixtures of 20% and 30% HbF with HbS. We find that the present model for polymerization, including molecular crowding, can accurately predict the rates of such mixtures, by using the single assumption that no significant amount of HbF enters the polymer. The effects of replacing HbS by HbF on the rates of polymer formation are found to be significantly lower than previous measurements appeared to indicate because the impact of the replacement is also highly dependent on the total hemoglobin concentration. This is because the molecular crowding of non-polymerizing HbF offsets substantially the effects of decreasing the concentration of HbS concentration, an effect that increases with concentration. Most strikingly, the demonstrated benefit of hydroxyurea therapy in slowing the kinetics of intracellular polymerization cannot be primarily due to enhanced HbF, but must have some other origin, which could itself represent a promising therapeutic approach.  相似文献   

10.
A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661) enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02) and high hemolytic index (beta  =  1.53, p = 0.002) in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02), and with proteinuria (beta  =  2.52, p  =  0.04). These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clinical complications of vascular dysfunction in sickle cell disease. Longitudinal and mechanistic studies should be conducted to confirm these hypotheses.  相似文献   

11.
In sickle cell disease, a single base pair substitution in the gene encoding the beta-globin chain of the haemoglobin molecule gives rise to a surprisingly broad spectrum of pathophysiological and clinical manifestations. Inflammation, endothelial activation, red blood cell membrane abnormalities and altered availability of vasoactive factors characterise this disorder. Clinically, patients suffer from a host of seemingly unrelated maladies, from pain episodes to strokes, life-threatening infections and pulmonary hypertension. Deepened understanding of this complex disease now allows us to begin to turn away from simple supportive treatments, and move towards therapies aimed at specific pathophysiological targets. This article, the first of two reviews on the pathophysiology of haemoglobinopathies, discusses the molecular basis of sickle cell disease, and elaborates on the many factors that exacerbate or ameliorate the disease process. It then focuses on the promising targeted therapies currently in use or under investigation. An accompanying article on haemoglobinopathies (Part II) focuses on thalassaemias.  相似文献   

12.
Personalized medicine: revolutionizing drug discovery and patient care.   总被引:5,自引:0,他引:5  
Advances in human genome research are opening the door to a new paradigm for practising medicine that promises to transform healthcare. Personalized medicine, the use of marker-assisted diagnosis and targeted therapies derived from an individual's molecular profile, will impact the way drugs are developed and medicine is practiced. Knowledge of the molecular basis of disease will lead to novel target identification, toxicogenomic markers to screen compounds and improved selection of clinical trial patients, which will fundamentally change the pharmaceutical industry. The traditional linear process of drug discovery and development will be replaced by an integrated and heuristic approach. In addition, patient care will be revolutionized through the use of novel molecular predisposition, screening, diagnostic, prognostic, pharmacogenomic and monitoring markers. Although numerous challenges will need to be met to make personalized medicine a reality, with time, this approach will replace the traditional trial-and-error practice of medicine.  相似文献   

13.
Taj Jadavji  Charles G. Prober 《CMAJ》1985,132(7):814-815
Dactylitis commonly occurs in patients with homozygous hemoglobin S disease (sickle cell anemia), sickle cell-hemoglobin C disease or sickle cell-β-thalassemia. A case is reported of dactylitis associated with sickle cell trait, a very rare occurrence. It may be that in this patient the disorder was secondary to severe diarrhea and dehydration.  相似文献   

14.
Red blood cells from 31 patients with sickle cell anemia whose hemoglobins were ascertained as SS were assayed for Mg-, Ca-, Na-, and total ATPase activities. The ATPase activities were correlated with the various stages of severity in each patient as determined by clinical parameters. The results demonstrate that increases in ATPase activities were associated with increases in the percentage severity of sickle cell anemia. Severity correlated inversely with fetal hemoglobin levels in the sickle cell patients. ATPase activities were generally higher in SS genotypes than in AS and AA normal individuals.  相似文献   

15.
Physiological removal of old erythrocytes from the circulation by macrophages is initiated by binding of autologous IgG to senescent cell antigen (SCA). SCA is generated from the anion exchanger band 3. This process is accompanied by a number of alterations in the function and structure of band 3. We measured these aging-related parameters in erythrocytes from individuals with sickle cell anemia. Most sickle erythrocytes have characteristics that are also found in senescent normal erythrocytes, such as an increased density and considerable concentrations of cell-bound IgG. Together with the concomitant changes in structure and function of band 3, these data suggest that most sickle erythrocytes have undergone a process of accelerated aging. Preliminary results indicate that this process is reversed upon vitamin E supplementation. These data show that the erythrocyte aging paradigm may provide a useful conceptual framework for the study of the pathophysiology and the evalution of therapeutic intervention in sickle cell disease, and support the view that oxidation can generate neoantigens that are recognized by autoantibodies.  相似文献   

16.
Carter RL  Chan AW 《遗传学报》2012,39(6):253-259
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders.Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types,providing a system for researchers to monitor disease progression during neurogenesis,along with serving as a platform for drug discovery.A number of stem cell derived models have been employed to establish in vitro research models of Huntington’s disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies.Although some progress has been made,there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved.In this article we review current stem cell models that have been reported,as well as discuss the issues that impair these studies.We also highlight the prospective application of Huntington’s disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.  相似文献   

17.
The potential and reliability of DNA analysis for the identification of human remains are demonstrated by the study of a recent bone sample, which represented a documented case of sickle cell anemia. beta-globin gene sequences obtained from the specimen revealed homozygosity for the sickle cell mutation, proving the authenticity of the retrieved residual DNA. Further investigation of mitochondrial and Y chromosome DNA polymorphic markers indicated that this sample came from a male of maternal West African (possibly Yoruban) and paternal Bantu lineages. The medical record, which became available after the DNA analyses had been completed, revealed that it belonged to a Jamaican black male. These findings are consistent with this individual being a descendent of Africans brought to Jamaica during the trans-Atlantic slave trade. This study exemplifies how a "reverse population genetics" approach can be applied to reconstruct a genetic profile from a bone specimen of an unknown individual.  相似文献   

18.
Mixed hemopoietic chimerism has the potential to correct genetic hemological diseases (sickle cell anemia, thalassemia) and eliminate chronic immunosuppressive therapy following organ transplantation. To date, most strategies require either recipient conditioning (gamma-irradiation, depletion of the peripheral immune system) or administration of "mega" doses of bone marrow to facilitate reliable engraftment. Although encouraging, many issues remain that may restrict or prevent clinical application of such strategies. We describe an alternative, nonirradiation based strategy using a single dose of busulfan, costimulation blockade, and T cell-depleted donor bone marrow, which promotes titratable macrochimerism and a reshaping of the T cell repertoire. Chimeras exhibit robust donor-specific tolerance, evidenced by acceptance of fully allogeneic skin grafts and failure to generate donor-specific proliferative responses in an in vivo graft-versus-host disease model of alloreactivity. In this model, donor cell infusion and costimulation blockade without busulfan were insufficient for tolerance induction as donor-specific IFN-gamma-producing T cells re-emerged and skin grafts were rejected at approximately 100 days. When applied to a murine beta-thalassemia model, this approach allows for the normalization of hemologic parameters and replacement of the diseased red cell compartment. Such a protocol may allow for clinical application of mixed chimerism strategies in patients with end-stage organ disease or hemoglobinopathies.  相似文献   

19.
Stem cells, regenerative medicine, and animal models of disease   总被引:1,自引:0,他引:1  
The field of stem cell biology and regenerative medicine is rapidly moving toward translation to clinical practice, and in doing so has become even more dependent on animal donors and hosts for generating cellular reagents and assaying their potential therapeutic efficacy in models of human disease. Advances in cell culture technologies have revealed a remarkable plasticity of stem cells from embryonic and adult tissues, and transplantation models are now needed to test the ability of these cells to protect at-risk cells and replace cells lost to injury or disease. With such a mandate, issues related to acceptable sources and controversial (e.g., chimeric) models have challenged the field to provide justification of their potential efficacy before the passage of new restrictions that may curb anticipated breakthroughs. Progress from the use of both in vitro and in vivo regenerative medicine models already offers hope both for the facilitation of stem cell phenotyping in recursive gene expression profile models and for the use of stem cells as powerful new therapeutic reagents for cancer, stroke, Parkinson's, and other challenging human diseases that result in movement disorders. This article describes research in support of the following three objectives: (1) To discover the best stem or progenitor cell in vitro protocols for isolating, expanding, and priming these cells to facilitate their massive propagation into just the right type of neuronal precursor cell for protection or replacement protocols for brain injury or disease, including those that affect movement such as Parkinson's disease and stroke; (2) To discover biogenic factors--compounds that affect stem/progenitor cells (e.g., from high-throughput screening and other bioassay approaches)--that will encourage reactive cell genesis, survival, selected differentiation, and restoration of connectivity in central nervous system movement and other disorders; and (3) To establish the best animal models of human disease and injury, using both small and large animals, for testing new regenerative medicine therapeutics.  相似文献   

20.

Background

Sickle cell anemia is an inherited disorder of hemoglobin that leads to a variety of acute and chronic complications. Abnormal cellular adhesion, mediated in part by selectins, has been implicated in the pathophysiology of the vaso-occlusion seen in sickle cell anemia, and selectin inhibition was able to restore blood flow in a mouse model of sickle cell disease.

Methods

We performed a Phase 1 study of the selectin inhibitor GMI 1070 in patients with sickle cell anemia. Fifteen patients who were clinically stable received GMI 1070 in two infusions.

Results

The drug was well tolerated without significant adverse events. There was a modest increase in total peripheral white blood cell count without clinical symptoms. Plasma concentrations were well-described by a two-compartment model with an elimination T1/2 of 7.7 hours and CLr of 19.6 mL/hour/kg. Computer-assisted intravital microscopy showed transient increases in red blood cell velocity in 3 of the 4 patients studied.

Conclusions

GMI 1070 was safe in stable patients with sickle cell anemia, and there was suggestion of increased blood flow in a subset of patients. At some time points between 4 and 48 hours after treatment with GMI 1070, there were significant decreases in biomarkers of endothelial activation (sE-selectin, sP-selectin, sICAM), leukocyte activation (MAC-1, LFA-1, PM aggregates) and the coagulation cascade (tissue factor, thrombin-antithrombin complexes). Development of GMI 1070 for the treatment of acute vaso-occlusive crisis is ongoing.

Trial Registration

ClinicalTrials.gov NCT00911495  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号