首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of biodiversity through deep time have been a staple for biologists and paleontologists for over 60 years. Investigations of species richness (diversity) revealed that at least five mass extinctions punctuated the last half billion years, each seeing the rapid demise of a large proportion of contemporary taxa. In contrast to diversity, the response of morphological diversity (disparity) to mass extinctions is unclear. Generally, diversity and disparity are decoupled, such that diversity may decline as morphological disparity increases, and vice versa. Here, we develop simulations to model disparity changes across mass extinctions using continuous traits and birth-death trees. We find no simple null for disparity change following a mass extinction but do observe general patterns. The range of trait values decreases following either random or trait-selective mass extinctions, whereas variance and the density of morphospace occupation only decline following trait-selective events. General trends may differentiate random and trait-selective mass extinctions, but methods struggle to identify trait selectivity. Long-term effects of mass extinction trait selectivity change support for phylogenetic comparative methods away from the simulated Brownian motion toward Ornstein-Uhlenbeck and Early Burst models. We find that morphological change over mass extinction is best studied by quantifying multiple aspects of morphospace occupation.  相似文献   

2.
Extending Rapoport's rule to Pacific marine fishes   总被引:3,自引:0,他引:3  
The mean bathymetric (depth) range of assemblages of marine fishes is negatively correlated with the depth at which the assemblage is found and negatively correlated with species richness. These findings support the creation of a new biogeographic rule patterned after the terrestrial Rapoport's Rules for Latitude and Elevation. Previous work on Rapoport's rule is extended to include this bathymetric rule and the basis for all known Rapoport's rules is generalized in hopes of broadening the search for other Rapoport's rules. Species richness is found to be correlated with Rapoport phenomena, consistent with previous studies. Moreover, local species richness is found to be strongly influenced by regional patterns of species richness (so-called macro-ecological factors), not just local influences such as productivity in the immediate area.  相似文献   

3.
Determining how ecological and evolutionary processes produce spatial variation in local species richness remains an unresolved challenge. Using mountains as a model system, we outline an integrative research approach to evaluate the influence of ecological and evolutionary mechanisms on the generation and maintenance of patterns of species richness along and among elevational gradients. Biodiversity scientists interested in patterns of species richness typically start by documenting patterns of species richness at regional and local scales, and based on their knowledge of the taxon, and the environmental and historical characteristics of a mountain region, they then ask whether diversity–environment relationships, if they exist, are explained mostly by ecological or evolutionary hypotheses. The final step, and perhaps most challenging one, is to tease apart the relative influence of ecological and evolutionary mechanisms. We propose that elucidating the relative influence of ecological and evolutionary mechanisms can be achieved by taking advantage of the replicated settings afforded by mountains, combined with targeted experiments along elevational gradients. This approach will not only identify potential mechanisms that drive patterns of species richness, but also allow scientists to generate more robust hypotheses about which factors generate and maintain local diversity.  相似文献   

4.
物种丰富度垂直分布格局及影响机制   总被引:1,自引:0,他引:1  
物种丰富度分布格局是一定地域内物种丰富度沿三维空间的立体分布,包括物种丰富度在经度、纬度和垂直梯度(海拔高度和海水深度)三个维度上的空间分异。近年来物种多样性的垂直分布格局与机制研究得到了生物地理学家和生态学家的重视。物种丰富度的垂直分布格局存在多种类型,但随海拔增加而物种数减少的单调递减模型和中海拔物种丰富度最高的单峰模型较为常见。目前在机制研究中验证较多的是气候稳定性、生物因子(种间相互作用)、能量、生境异质性、干扰、进化时间、物种分化速率、面积、中域效应(mid-domain effect)、生态位保守性(niche conservatism)等假说和机制。物种丰富度的分布格局是多方面因素综合作用的结果;由于地理、地形、气候、地质演化历史、物种库和进化历史、物种分化速率、干扰等差异,在不同地区存在着特别的物种丰富度空间分布格局和机制;处于同一地区的不同类群的物种也因进化扩散历史和生态适应能力不同而呈现多样化的分布格局。因此,对不同地区和类群的物种丰富度格局和机制进行研究应具体分析后才能得到可信结论。  相似文献   

5.
6.
Aim We evaluated the bathymetric gradient of benthic polychaete species richness from the Chilean coast, as well as its possible underlying causes. We tested three possible hypotheses to explain the richness gradient: (1) Rapoport's effect; (2) the mid‐domain effect (MDE); and (c) the source–sink hypothesis. Location South‐eastern Pacific coast of Chile. Methods The bathymetric gradient in richness was evaluated using the reported ranges of bathymetric distribution of 498 polychaete species, from the intertidal to abyssal zone (c. 4700 m). Rapoport's effect was evaluated by examining the relationship between bathymetric mid‐point and bathymetric range extent, and species richness and depth. The MDE was tested using the Monte Carlo simulation program. The source–sink hypothesis was tested through nestedness analysis. Results Species richness shows significant exponential decay across the bathymetric gradient. The pattern is characterized by a high presence of short‐ranged species on the continental shelf area; while only a few species reach abyssal depths, and they tend to show extremely wide bathymetric ranges. Our simulation analyses showed that, in general, the pattern is robust to sampling artefacts. This pattern cannot be reproduced by the MDE, which predicts a parabolic richness gradient. Rather, results agree with the predictions of Rapoport's effect. Additionally, the data set is significantly nested at species, genus and family levels, supporting the source–sink hypothesis. Main conclusions The sharp exponential decay in benthic polychaete richness across the bathymetric gradient supports the general idea that abyssal environments should harbour fewer species than shallower zones. This pattern may be the result of colonization–extinction dynamics, characterized by abyssal assemblages acting as ‘sinks’ maintained mainly by shallower ‘sources’. The source–sink hypothesis provides a conceptual and methodological framework that may shed light on the search for general patterns of diversity across large spatial scales.  相似文献   

7.
The species richness of biological communities is influenced by both local ecological, regional ecological, and historical factors. The relative importance of these factors may be deduced by comparison between communities in climatically and ecologically equivalent, but geographically and historically separate regions of the world. This claim is based on the hypothesis that community processes driven by similar local ecological factors lead to convergence in species richness whereas those driven by differing regional or historical factors lead to divergence. An intercontinental comparison between the winter rainfall regions of South Africa and the Iberian Peninsula showed that overall species richness of dung beetles was dissimilar at local, subregional and regional scales in Scarabaeidae s. str. but similar at all scales in Aphodiinae. Removal of species widespread in the summer rainfall region of Africa or the temperate region of Europe (regional component) resulted in dissimilarity in species richness of mediterranean endemics at all scales in both dung beetle taxa. However, the lines joining each set of species richness values were parallel which may indicate similarities in processes between different mediterranean climatic regions despite slight differences in latitudinal range. The dominant pattern of dissimilarity or non-convergence may be related primarily to intercontinental differences in regional biogeographical and evolutionary history (faunal dispersal, glaciation effects in relation to geographical barriers to dispersal, speciation history, long-term disturbance history). The limited pattern of similarity or convergence in overall species richness of Aphodiinae may be a chance result or primarily related to intercontinental similarities in local ecological factors.  相似文献   

8.
Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large‐scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non‐native species richness and (2) do non‐native species originate from higher diversity systems. A negative relationship between native and non‐native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non‐native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species‐rich systems inhibit establishment of generalist non‐native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non‐native species richness found at different spatial scales.  相似文献   

9.
While global variation in taxonomic diversity is strongly linked to latitude, the extent to which morphological disparity follows geographical gradients is less well known. We estimated patterns of lineage diversification, morphological disparity and rates of phenotypic evolution in the Old World lizard family Lacertidae, which displays a nearly inverse latitudinal diversity gradient with decreasing species richness towards the tropics. We found that lacertids exhibit relatively constant rates of lineage accumulation over time, although the majority of morphological variation appears to have originated during recent divergence events, resulting in increased partitioning of disparity within subclades. Among subclades, tropical arboreal taxa exhibited the fastest rates of shape change while temperate European taxa were the slowest, resulting in an inverse relationship between latitudinal diversity and rates of phenotypic evolution. This pattern demonstrates a compelling counterexample to the ecological opportunity theory of diversification, suggesting an uncoupling of the processes generating species diversity and morphological differentiation across spatial scales.  相似文献   

10.
Abstract:  The distribution of organic forms is clumpy at any scale from populations to the highest taxonomic categories, and whether considered within clades or within ecosystems. The fossil record provides little support for expectations that the morphological gaps between species or groups of species have increased through time as it might if the gaps were created by extinction of a more homogeneous distribution of morphologies. As the quantitative assessments of morphology have replaced counts of higher taxa as a metric of morphological disparity, numerous studies have demonstrated the rapid construction of morphospace early in evolutionary radiations, and have emphasized the difference between taxonomic measures of morphological diversity and quantitative assessments of disparity. Other studies have evaluated changing patterns of disparity across mass extinctions, ecomorphological patterns and the patterns of convergence within ecological communities, while the development of theoretical morphology has greatly aided efforts to understand why some forms do not occur. A parallel, and until recently, largely separate research effort in evolutionary developmental biology has established that the developmental toolkit underlying the remarkable breadth of metazoan form is largely identical among Bilateria, and many components are shared among all metazoa. Underlying this concern with disparity is a question about temporal variation in the production of morphological innovations, a debate over the relative significance of the generation of new morphologies vs. differential probabilities of their successful introduction, and the relative importance of constraint, convergence and contingency in the evolution of form.  相似文献   

11.
Studies of deep-sea biodiversity focus almost exclusively on geographic patterns of alpha-diversity. Few include the morphological or ecological properties of species that indicate their actual roles in community assembly. Here, we explore morphological disparity of shell architecture in gastropods from lower bathyal and abyssal environments of the western North Atlantic as a new dimension of deep-sea biodiversity. The lower bathyal-abyssal transition parallels a gradient of decreasing species diversity with depth and distance from land. Morphological disparity measures how the variety of body plans in a taxon fills a morphospace. We examine disparity in shell form by constructing both empirical (eigenshape analysis) and theoretical (Schindel's modification of Raup's model) morphospaces. The two approaches provide very consistent results. The centroids of lower bathyal and abyssal morphospaces are statistically indistinguishable. The absolute volumes of lower bathyal morphospaces exceed those of the abyss; however, when the volumes are standardized to a common number of species they are not significantly different. The abyssal morphospaces are simply more sparsely occupied. In terms of the variety of basic shell types, abyssal species show the same disparity values as random subsets of the lower bathyal fauna. Abyssal species possess no evident evolutionary innovation. There are, however, conspicuous changes in the relative abundance of shell forms between the two assemblages. The lower bathyal fauna contains a fairly equable mix of species abundances, trophic modes, and shell types. The abyssal group is numerically dominated by species that are deposit feeders with compact unsculptured shells.  相似文献   

12.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

13.
Girard C  Renaud S 《PloS one》2012,7(4):e36230
Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped.  相似文献   

14.
定量古生物学是现代古生物学的一个分支,提倡用定量的手段来研究地质历史时期生命的演化过程。我国从事定量古生物研究的群体较小,特别是对前寒武纪早期生命演化的定量研究还没有系统地展开。这篇文章将主要介绍如何利用定量手段来研究前寒武纪化石的形态演化。对于前寒武纪化石,由于大部分化石分类属性的不确定性,通常使用几何性状对化石的最基本形态结构进行分析,并用存在/缺失(1/0)这种离散变量对每个性状进行量化。非参数多维标量分析方法[Non-parametric multidimensional scaling analysis(MDS)]可以将高维度的离散数据投影到二维或者三维的形态空间上,进而探讨生物群在形态空间中所占有的范围;由离散变量计算得出的生物群的表形分异度(morphological disparity)可以用MDS方差或者平均差异参数[Mean dissimilarity coeffi-cient(MDC)]来计算。形态空间的范围(morphospace range)和表形分异度是相互联系的,如果形态空间范围是固定的,那么表形分异度实际上代表了生物群在形态空间中的分布密度。在解释数据之前,需要对可能存在的样本效应进行测试。常用的方法包括稀释法(rarefaction)、随机取样法(randomization)和自举法(bootstrapping)等。为了帮助读者进一步了解这些方法的使用,文中列举了三个实例:伊迪卡拉生物的形态演化,元古代宏观藻类的形态演化和元古代及寒武纪疑源类的演化。  相似文献   

15.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

16.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

17.
Regional and local species richness of temporary pond dytiscid water beetles were compared among three regions within the Palearctic: (1) Sweden in north west Europe, (2) Primorye and (3) Sakhalin Island in the Russian Far East. Both local and regional species richness were highest in Sweden and lowest in Sakhalin. Regional species richness was calculated from literature and collecting data for each region and for nested parts of regions. Local species richness was estimated from standardized net samples from fourteen or fifteen ponds in each region. Two different rarefaction techniques applied to the net-sample data confirmed the observed interregional differences in species richness. Partial least square regression showed that pond area, depth and temperature affected local species richness positively in each region, whereas increasing shade and drought frequency had negative effects. Residuals from the regression analysis were positive in Sweden, negative in Sakhalin, and near zero in Primorye ponds. Consequently, the local species richness was related positively to regional species richness also when compensated for differences in the local pond environment. This was verified when pond species richness of each region was correlated with principal component scores representing a combination of pond area, depth and temperature. The species' distributions among ponds displayed significantly nested patterns in Sweden and Sakhalin. However, species were significantly sorted along the pond area gradient only in Sweden. It is concluded that the observed interregional differences in local species richness are best explained by the accompanying gradient in regional species richness, lending support to the hypothesis of regional enrichment. Selected historical and ecological explanations for the observed differences in regional species richness are discussed.  相似文献   

18.
In no group of organisms has the link between species richness, morphological disparity, disparity in mechanics and functional or ecological diversification been made explicit. As a step towards integrating these measures of diversity, we examine how the mechanics of the anterior-jaw four-bar linkages of 104 species of Great Barrier Reef (GBR) labrid fishes maps into a scale-independent morphospace. As predicted from theory, no relationship exists between overall size and the mechanics of velocity and force transmission in labrid anterior-jaw linkages. Nonetheless, mechanics associated with the anterior jaw appear to have constrained diversification of labrid anterior-jaw morphology. Furthermore, simulations depict a generally nonlinear relationship between the length of individual links and transmission of motion. In addition, no relationship was found between morphological disparity and mechanical disparity among the most species-rich labrid groups from the GBR. It is also established that regions of morphospace equivalent in morphological disparity differ over nearly an order of magnitude in mechanical disparity. These results illustrate that without an explicit interpretation of the consequences of per unit change in morphology, conclusions about diversification drawn only from morphological disparity may be misleading.  相似文献   

19.
We analysed the pattern of covariation of European spider species richness with various environmental variables at different scales. Four layers of perception ranging from single investigation sites to the whole European continent were selected. Species richness was determined using published data from all four scales. Correlation analyses and stepwise multiple linear regression were used to relate richness to topographic, climatic and biotic variables. Up to nine environmental variables were included in the analyses (area, latitude, elevation range, mean annual temperature, local variation in mean annual temperature, mean annual precipitation, mean July temperature, local variation in mean July temperature, plant species richness). At the local and at the continental scale, no significant correlations with surface area were found, whereas at the landscape and regional scale, surface area had a significant positive effect on species richness. Factors that were positively correlated with species richness at both broader scales were plant species richness, elevation range, and specific temperature variables (regional scale: local variation in mean annual, and mean July temperature; continental scale: mean July temperature). Latitude was significantly negatively correlated with the species richness at the continental scale. Multiple models for spider species richness data accounted for up to 77% of the total variance in spider species richness data. Furthermore, multiple models explained variation in plant species richness up to 79% through the variables mean July temperature and elevation range. We conclude that these first continental wide analyses grasp the overall pattern in spider species richness of Europe quite well, although some of the observed patterns are not directly causal. Climatic variables are expected to be among the most important direct factors, although other variables (e.g. elevation range, plant species richness) are important (surrogate) correlates of spider species richness.  相似文献   

20.
Mountains are among the most powerful natural gradients for testing ecological and evolutionary responses of biota to environmental influences because differences in climate and plant structure occur over short spatial scales. We describe the spatiotemporal distribution patterns and drives of fruit‐feeding butterfly diversity in the mountainous region of Serra do Cipó, Minas Gerais, Brazil. Seven elevations from 822 to 1,388 m a.s.l. were selected for evaluating the effects of abiotic factors and vegetation characteristics on butterfly diversity. A total of 44 fruit‐feeding butterfly species were recorded in a two‐year study. Species richness (local and regional) of fruit‐feeding butterflies decreased with increasing elevation. The interaction between temperature or humidity and precipitation influenced the abundance and β‐diversity of butterflies in the elevation gradient, whereas β‐diversity decreased with increasing plant richness. Butterfly richness (local and regional) and β‐diversity varied with the sampling period, with fewer species in July (2012 and 2013), the dry period, as expected for Neotropical insects. β‐Diversity in space and time was due to species replacement (turnover), indicating that butterfly composition differs throughout the mountain and over time. In summary, climate and plant richness largely influence butterfly diversity in the elevational gradient. Climatic changes in conjunction with increasing anthropic impacts on mountainous regions of southeast Brazil will likely influence the community of mountaintop butterflies in the Espinhaço Mountain Range. Abstract in Portuguese is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号