首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the early hepatic biochemical and ultrastructural responses to insulin replacement in streptozotocin-diabetic rats and insulin withdrawal from insulin-maintained diabetic rats. Insulin administration rapidly lowered plasma glucose and the elevated glucose-6-phosphatase (G-6-Pase) specific activity of the diabetic rats. However, hepatic glycogen did not increase until after 3 hr of insulin treatment. Hepatic ultrastructure responded to insulin replacement after the decline in glucose and G-6-Pase. This was seen in periportal hepatocytes as a reduction in the close association between smooth endoplasmic reticulum (SER) and glycogen particles in the diabetic animals. The treated rats showed hepatic SER restricted to the periphery of glycogen masses, as is characteristic of these cells from normal rats, in many cells by 6 hr and all cells by 18 hr. Insulin withdrawal from insulin-treated diabetic rats elicited nearly a total reversal of the above events. Plasma insulin declined to a value half that of the normal rats by 6 hr after withdrawal; concurrently, plasma glucose rose sharply to hyperglycemic values as hepatic glycogen content dropped. Following the rise in plasma glucose and fall in glycogen content, G-6-Pase specific activity increased and by 16 hr reached the high values characteristic of the diabetic animal. Hepatic ultrastructure was also changed as evidenced by an intrusion of elements of the SER into the dense glycogen masses; the result was dispersed glycogen closely associated with SER as seen in the diabetic animal. It is concluded that the hepatic response to insulin replacement in diabetic animals and diabetic onset in insulin-withdrawn animals is rapid and occurs through defined stages.  相似文献   

2.
Abstract— Young mice treated with hydrocortisone (50 mg/kg) subcutaneously for 10 days showed a doubling of brain glucose. Brain phospho-creatine, glucose-6-phosphate, and ATP increased slightly. Brain glycogen and lactate were unchanged. Total energy reserve of the brain was 23 per cent higher than the control value. Liver glycogen was increased 47 per cent; liver and blood glucose levels were 11 per cent lower than in control animals. Since the animals showed no evidence of sedation, these findings suggest a facilitated transport of glucose from blood into the brain under the influence of hydrocortisone. Other possible explanations include an inhibition of the hexose monophosphate shunt and a proportionate decrease in both the oxidative and glycolytic pathways of the brain, but it was concluded that these explanations are less likely.  相似文献   

3.
The effects on newly-hatched turkey poults of feeding diets with varying levels of carbohydrate and of oral gavage with suspensions of corn starch were studied. Feeding lowered hepatic glucose-6-phosphatase activity and raised blood glucose and hepatic glycogen concentrations. In Nicholas strain turkeys, increases of dietary levels of carbohydrate enhanced hepatic glycogen stores without affecting blood glucose concentration or glucose-6-phosphatase activity. Oral gavage of poults with suspensions of corn starch in water raised blood glucose and hepatic glycogen concentrations and lowered glucose-6-phosphatase activity in dose- and time-dependent manners. Changes were noted at 1 hr post-gavage. Oral gavage with starch lowered lactate concentrations in muscle and plasma and lowered plasma concentrations of β-hydroxybutyrate and urate. Plasma concentrations of pyruvate appeared to decline with post-hatch holding without feed. Thus, the apparent effect of starch gavage on plasma pyruvate (high concentration) is dependent upon the length of the holding period for the controls. The data show that poults can alter their metabolism (decrease lipid oxidation and gluconeogenesis and increase carbohydrate stores) almost immediately (1 hr) after oral administration of carbohydrate.  相似文献   

4.
The effects of ether anaesthesia on metabolites of mouse brain in altered endocrine states has been examined. Alloxan diabetic mice, with elevated levels of blood and brain glucose, exhibited changes in brain metabolites after ether anaesthesia that were comparable to those seen in normal animals. Sympathectomized and/or adrenalectomized mice had decreased levels of brain glucose. The percentage elevation of glucose in the brains of these animals under ether anaesthesia approximated to normal values, although the absolute cerebral levels were lower. Increases in glycogen in the brains of these animals were somewhat diminished. In none of the altered endocrine states were the changes in brain metabolites following ether anaesthesia eliminated. The activity of UDPglucose-glycogen glucosyltransferase (UDPglucose: glycogen α-4-glucosyltransferasee, EC 2.4.1.11) in the mouse brain was measured in the absence and in the presence of glucose-6-P. Neither the total activity nor the percentage of the I form (measured in the absence of glucose-6-P) was altered by anaesthesia or by the endocrine state of the animal. The Michaelis constants with UDPglucose as substrate for the total and I forms were 0·36 mM and 1·0 mM, respectively. Considerable UDPglucose-glycogen glucosyltransferase activity was observed in the absence of added glycogen primer. The observed increase in activity in the presence of added glucose-6-P was greater than would have been anticipated if the hexose phosphate were acting at only one site.  相似文献   

5.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

6.
This study is to assess the glucose lowering activity of sakuranin in diabetes induced rats by streptozotocin (STZ) and nicotinamide (NA). Diabetic rats were treated sakuranin for 45 days (20, 40, 80 mg/kg) by orally. Sakuranin (80 mg/kg body weight) was normalized the changes of abnormal blood glucose plasma glucose and plasma insulin levels. Hence, we have continued the further research with this active dose of 80 mg/kg sakuranin. The plasma glucose and glycosylated hemoglobin (HbA1c) reduced and insulin, glycogen and hemoglobin levels increased by Sakuranin administration in diabetic rats. Additionally, hexokinase and glucose-6-phophate dehydrogenase activities increased and glucose-6-phosphatase and fructose-1,6-bisphosphatase activities decreased in diabetic condition while administration of treated compound. In this observed result signified that sakuranin may have potential role of diabetic condition rats by evidenced with reducing glucose and increasing insulin and also protect the carbohydrate metabolic changes.  相似文献   

7.
We investigated the antihyperglycemic effect of p-methoxycinnamic acid (p-MCA), a cinnamic acid derivative, on plasma glucose and insulin concentrations, activities of hepatic glucose-regulating enzymes and hepatic glycogen content in normal and streptozotocin (STZ)-induced diabetic rats. p-MCA (10-100 mg/kg, PO) dose-dependently decreased plasma glucose concentration in both normal and diabetic rats in the oral glucose tolerance test. To investigate the chronic effects of p-MCA on glucose metabolism, p-MCA (40 mg/kg, PO) was administered to normal and diabetic rats once a day for 4 weeks. p-MCA reduced plasma glucose concentration in diabetic rats, which was observed during the 4-week study. However, p-MCA treatment did not change plasma glucose concentrations in normal rats during the 4-week study. p-MCA also reduced the excessive activities of hepatic glucose-6-phosphatase, hepatic hexokinase, glucokinase and phosphofructokinase in diabetic rats and increased hepatic glycogen in these rats. In p-MCA-treated normal rats, there were no changes in the activities of hepatic glucose-regulating enzymes, hepatic glycogen and glucose-6-phosphate. Our findings suggested that p-MCA exert its antihyperglycemic effect by increasing insulin secretion and glycolysis, and by decreasing gluconeogenesis.  相似文献   

8.
Chromium has been recognized as an essential trace element that plays an important role in carbohydrate metabolism. However, the molecular mechanisms involved in its action are not clear. This study was undertaken to understand the mechanism of chromium action in experimental diabetes. Streptozotocin-induced diabetic animals were administered chromium as chromium picolinate (CrP) at a daily dose of 1 mg/kg body weight for a period of 4 weeks. It was observed that chromium complexed with picolinate was effective in lowering plasma glucose levels as well as was able to alleviate polyphagia, polydipsia, and weight loss in diabetic animals. Administration of chromium was also found to normalize glycogen content in liver of diabetic animals to near control levels. The reduction in plasma glucose levels by chromium was accompanied by increase in activity of glycolytic enzymes (e.g., glucokinase, phosphofructokinase, and pyruvate kinase) and by suppression in activity of gluconeogenic enzymes (e.g., glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) in liver. Hepatic glucose uptake was found to be increased by chromium supplementation as demonstrated by decrease in Km and increase in Vmax values in diabetic animals. Chromium levels were lower in the liver of diabetic rats when compared with that of control rats. A negative correlation was observed between plasma glucose and chromium concentration in patients with diabetes. The data suggests that chromium supplementation as CrP is beneficial in correcting hyperglycemia, implying that the modulation of the glucose metabolism by chromium may be therapeutically beneficial in the treatment of diabetes.  相似文献   

9.
Adaptive enzyme responses in adipose tissue of obese hyperglycemic mice   总被引:1,自引:0,他引:1  
Effects of fasting-refeeding regimens were studied in genetically obese hyperglycemic mice and their thin littermates to ascertain the possible existence of a differential response. Animals were killed after a 48-hr fast followed by 24, 48, and 72 hr of refeeding with laboratory pellets plus either 15% glucose or 15% glycerol in the drinking water. In addition, obese mice were fasted 96 hr followed by 144 hr of refeeding. In adipose tissue of fasted-refed thin mice, activities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), alpha-glycerophosphate dehydrogenase (EC 1.1.1.8), lactic dehydrogenase (EC 1.1.1.27), and also glycogen content were increased over control values. In fasted-refed obese mice, neither significant changes in the activities of these enzymes nor glycogen content were observed. In alloxan-treated thin mice, adipose tissue glucose-6-phosphate dehydrogenase activity was decreased, while in identically treated obese animals, only alpha-glycerophosphate dehydrogenase activity was increased. The concept that an impaired “adaptive enzyme” response is a significant aspect of the obese state is suggested by these data.  相似文献   

10.
The present study was designed to analyze the effect of acute aluminium phosphide (ALP) (10 mg/kg body wt.) exposure on the glucose homeostasis in rat liver and brain. ALP has been implicated in the inhibition of cytochrome oxidase causing reduced oxygen uptake and decreased ATP synthesis eventually resulting in cellular energy crisis. A significant decrease in plasma glucose levels in the ALP treated rats has been observed. Therefore, decreased ATP levels coupled with hypoglycemia may further intensify the cellular energy deficits. In order to meet the sudden increase in the local energy demand, the brain tissue utilizes its stored energy in the form of glycogen breakdown as observed by a decrease in the glycogen levels in both liver and brain which was accompanied by a marked increase in the activity of glycogen phosphorylase in both the tissues. The glycolytic rate was found to be enhanced in brain tissue as evident by increased activities of hexokinase and phosphofructokinase enzymes, but decreased in liver of ALP treated rats. Lactate levels were increased in plasma and brain, but decreased in liver of ALP treated rats. Pyruvate levels increased in the plasma and liver, but no change was observed in the brain tissue. ALP did not cause any change in the gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-bisphophatase in brain, but a significant increase was observed in the liver. Results of the study showed that ALP induced cellular energy deficit leads to compromised energy status of liver and brain coupled with substantial alterations in glucose homeostasis. However, the activity of glucose-6-phosphate dehydrogenase decreased significantly in both the tissues.  相似文献   

11.
Zucker diabetic fatty rats develop type 2 diabetes concomitantly with peripheral insulin resistance. Hepatocytes from these rats and their control lean counterparts have been cultured, and a number of key parameters of glucose metabolism have been determined. Glucokinase activity was 4.5-fold lower in hepatocytes from diabetic rats than in hepatocytes from healthy ones. In contrast, hexokinase activity was about 2-fold higher in hepatocytes from diabetic animals than in healthy ones. Glucose-6-phosphatase activity was not significantly different. Despite the altered ratios of glucokinase to hexokinase activity, intracellular glucose 6-phosphate concentrations were similar in the two types of cells when they where incubated with 1-25 mM glucose. However, glycogen levels and glycogen synthase activity ratio were lower in hepatocytes from diabetic animals. Total pyruvate kinase activity and its activity ratio as well as fructose 2,6-bisphosphate concentration and lactate production were also lower in cells from diabetic animals. All of these data indicate that glucose metabolism is clearly impaired in hepatocytes from Zucker diabetic fatty rats. Glucokinase overexpression using adenovirus restored glucose metabolism in diabetic hepatocytes. In glucokinase-overexpressing cells, glucose 6-phosphate levels increased. Moreover, glycogen deposition was greatly enhanced due to the activation of glycogen synthase. Pyruvate kinase was also activated, and fructose-2,6-bisphosphate concentration and lactate production were increased in glucokinase-overexpressing diabetic hepatocytes. Overexpression of hexokinase I did not increase glycogen deposition. In conclusion, hepatocytes from Zucker diabetic fatty rats showed depressed glycogen and glycolytic metabolism, but glucokinase overexpression improved their glucose utilization and storage.  相似文献   

12.
The effects in kidney of streptozotocin-induced diabetes and of insulin supplementation to diabetic animals on glycogen-metabolizing enzymes were determined. Kidney glycogen levels were approximately 30-fold higher in diabetic animals than in control or insulintreated diabetic animals. The activities of glycogenolytic enzymes i.e., phosphorylase (both a and b), phosphorylase kinase, and protein kinase were not significantly altered in the diabetic animals. Glycogen synthase (I form) activity decreased in the diabetic animals whereas total glycogen synthase (I + D) activity significantly increased in these animals. The activities were restored to control values after insulin therapy. Diabetic animals also showed a 3-fold increase in glucose 6-phosphate levels. These data suggest that higher accumulation of glycogen in kidneys of diabetic animals is due to increased amounts of total glycogen synthase and its activator glucose 6-phosphate.  相似文献   

13.
—The levels of ATP, phosphocreatine, glucose, glucose-6-P., lactate, and glycogen have been measured in brains and spinal cords of lamprey larvae. Levels of glycogen in the brains were high, sometimes exceeding 100 m-moles of glycosyl units/kg wet weight. Isolated brains incubated in oxygenated saline exhibited the same levels of ATP and phosphocreatine as brains of intact animals. The level of glucose in tissue water of isolated brains approximated that found in the medium, except at low concentrations where the brains maintained levels of glucose many times that of the medium. It is demonstrated that under metabolic stress lamprey brains produce glucose by the breakdown of glycogen and the probable action of a glucose-6-phosphatase. The hypothesis is proposed that cells of the brain exchange glucose by this mechanism.  相似文献   

14.
Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM.  相似文献   

15.
1. Feeding British United turkeys (BUT) and Nicholas turkeys (NT) diets with varying carbohydrate levels for 24 hr post-hatch resulted in lower hepatic glucose-6-phosphatase activity and higher plasma glucose levels as dietary carbohydrate level was increased. 2. There were no differences between the strains in liver weight or glucose-6-phosphatase activity, but BUT exhibited higher plasma glucose values than did NT at the two highest levels of carbohydrate. Plasma glucose did not differ between strains at the lowest level of carbohydrate or in fasted poults. 3. Blood glucose values were consistently higher in both strains when sampled 1 hr after initial sampling of fasted poults. 4. Both strains were able to maintain the 1 hr blood glucose levels through 24 hr when kept at approximately 37 degrees C. 5. When held at approximately 21 C for the first hour and at approximately 37 degrees C through 24 hr fasted NT were able to maintain the initial blood glucose rise while BUT were not.  相似文献   

16.
We investigated whether glucocorticoids [i.e., corticosterone (Cort) in rats] released during sleep deprivation (SD) affect regional brain glycogen stores in 34-day-old Long-Evans rats. Adrenalectomized (with Cort replacement; Adx+) and intact animals were sleep deprived for 6 h beginning at lights on and then immediately killed by microwave irradiation. Brain and liver glycogen and glucose and plasma glucose levels were measured. After SD in intact animals, glycogen levels decreased in the cerebellum and hippocampus but not in the cortex or brain stem. By contrast, glycogen levels in the cortex of Adx+ rats increased by 43% (P < 0.001) after SD, while other regions were unaffected. Also in Adx+ animals, glucose levels were decreased by an average of 28% throughout the brain after SD. Intact sleep-deprived rats had elevations of circulating Cort, blood, and liver glucose that were absent in intact control and Adx+ animals. Different responses between brain structures after SD may be due to regional variability in metabolic rate or glycogen metabolism. Our findings suggest that the elevated glucocorticoid secretion during SD causes brain glycogenolysis in response to energy demands.  相似文献   

17.
Several enzymes and metabolites concerned with carbohydrate metabolism were examined in mice infected with Listeria monocytogenes. Liver glycogen and glucose decreased parallel to severity of infection. The concentration of glucose in the blood fell to abnormally low levels with a hypoglycemia being most evident at 72 hr. There was a significant decrease in the activity of hepatic uridine diphosphate glucose-glycogen transglucosylase. This decrease in enzymatic activity correlated with the rate of glycogen depletion. Phosphorylase activity declined in a similar fashion, contraindicating enhanced glycogenolysis as the mechanism responsible for glycogen depletion. Although glucose-6-phosphatase decreased throughout the infection period, it did not appear to be the major metabolic defect causing hypoglycemia in Listeria-infected mice. Further distortion of carbohydrate metabolism was indicated by findings of increased levels of pyruvate and lactate in the blood of infected animals.  相似文献   

18.
《Phytomedicine》2014,21(6):793-799
The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100 mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide – a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential.  相似文献   

19.
Ugochukwu NH  Babady NE 《Life sciences》2003,73(15):1925-1938
The present study was designed to investigate the antihyperglycemic effects of aqueous and ethanolic extracts from Gongronema latifolium leaves on glucose and glycogen metabolism in livers of non-diabetic and streptozotocin-induced diabetic rats. To investigate the effects of aqueous or ethanolic leaf extracts of G. latifolium, non-diabetic and STZ diabetic rats were treated twice daily (100 mg/Kg) for two weeks. Diabetic rats showed a significant decrease in the activities of hepatic hexokinase (HK), phosphofructokinase (PFK) and glucose-6-phosphate dehydrogenase (G6PDH) and an increase in glucokinase (GK) activity. The levels of hepatic glycogen and glucose were also increased in diabetic rats. However, there were no significant differences in the activities of glucose-6-phosphatase (G6Pase) in treated and untreated diabetic rats. The ethanolic extract significantly increased the activities of HK (p<0.01), PFK (p<0.001) and G6PDH (p<0.01) in diabetic rats, decreased the activity of GK (p<0.05) and the levels of hepatic glycogen (p<0.01) and both hepatic (p<0.001) and blood glucose (40%). The aqueous extract of G. latifolium was only able to significantly increase the activities of HK and decrease the activities of GK but did not produce any significant change in the hepatic glycogen and both hepatic and blood glucose content of diabetic rats. Our data show that the ethanolic extract from G. latifolium leaves has antihyperglycemic potency, which is thought to be mediated through the activation of HK, PFK, G6PDH and inhibition of GK in the liver. The ethanolic extract is under further investigation to determine the chemical structure of the active compound(s) and its/their mechanism of action.  相似文献   

20.
Gluconeogenesis and ketogenesis were studied in isolated hepatocytes obtained from normal and alloxan diabetic rats. Insulin treatment maintained near-normal blood glucose levels and caused an increase in glycogen deposition. The third day after insulin withdrawal the rats displayed a diabetic syndrome marked by progressive hyperglycemia and glycogen depletion. Net glucose production in liver cells isolated from alloxan diabetic rats progressively increased with time up to 72 hr after the last in vivo insulin injection. Maximal glucose production was observed at 72 hr with 10 mM alanine, lactate, pyruvate, or fructose. Glucose production decreased at 96 hr. The same pattern was observed with the incorporation of labeled bicarbonate into glucose. Ketogenesis in liver cells and hepatic lipid content also peaked at 72 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号