首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Estradiol (E2) induces an increase in the peptide elongation rate of isolated uterine ribosomes assayed in a cell-free protein synthesis system. An inhibitory factor, extracted from ribosomes of E2-deprived rats, was found to inhibit the peptide elongation reaction by acting on certain tRNAs to render them incapable of binding to aminoacyl-tRNA synthetases, thus reducing the availability of specific aminoacylated tRNAs required for the sequential translation of the codons in mRNA. The uterine ribosome-associated tRNA inactivator (RATI) has been partially purified and monoclonal antibodies (MABs) to RATI have been prepared. Specificity of the MABs for RATI was indicated by the inactivation of RATI in vitro by the anti-RATI MABs. RATI selectively inactivates deacylated, but not acylated, tRNAs and the inactivation does not appear to involve nuclease cleavage of the tRNA. Within 1 h after E2 treatment 50% of both RATI activity and immunoreactivity were lost from the uterine ribosome extracts, suggesting that E2 regulation of tRNA reutilization may occur through dissociation of RATI from the ribosomal site of tRNA deacylation or alteration in the structure of RATI resulting in inactivation both biologically and immunologically. We propose that RATI may function as an E2-regulatable 'switch' mechanism which inactivates, delays or defers the aminoacylation of certain tRNAs in the absence of E2 and which participates in the regulation of protein synthesis at the translational level by creating rate-limiting levels of certain tRNAs in the E2-deprived uterus.  相似文献   

3.
Transfer RNAs (tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as “adaptor” molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond participating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Investigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information. Supported by National Natural Science Foundation of China (Grant Nos. 30870530 and 30570398) and the National Key Basic Research Program of China (Grant No. 2005CB724600)  相似文献   

4.
Elongation in protein translation is strongly dependent on the availability of mature transfer RNAs (tRNAs). The relative concentrations of the tRNA isoacceptors determine the translation efficiency in unicellular organisms. However, the degree of correspondence of codons and the relevant tRNA isoacceptors serves as an estimator for translation efficiency in all organisms. In this study, we focus on the translational capacity of the human proteome. We show that the correspondence between the codon usage and tRNAs can be improved by combining experimental measurements with the genomic copy number of isoacceptor groups. We show that there are technologies of tRNA measurements that are useful for our analysis. However, fragments of tRNAs do not agree with translational capacity. It was shown that there is a significant increase in the absolute levels of tRNA genes in cancerous cells in comparison to healthy cells. However, we find that the relative composition of tRNA isoacceptors in healthy, cancerous, or transformed cells remains almost identical. This result may indicate that maintaining the relative tRNA composition in cancerous cells is advantageous via its stabilizing of the effectiveness of translation.  相似文献   

5.
Seligmann H 《Bio Systems》2011,105(3):271-285
Genomic amino acid usages coevolve with cloverleaf formation capacities of corresponding primate mitochondrial tRNAs, also for antisense tRNAs, suggesting translational function for sense and antisense tRNAs. Some antisense tRNAs are antitermination tRNAs (anticodons match stops (UAR: UAA, UAG; AGR: AGA, AGG)). Genomes possessing antitermination tRNAs avoid corresponding stops in frames 0 and +1, preventing translational antitermination. In frame +2, AGR stop frequencies and corresponding antisense antitermination tRNAs coevolve positively. This suggests expression of frameshifted overlapping genes, potentially shortening genomes, increasing metabolic efficiency. Blast analyses of hypothetical proteins translated from one and seven +1, respectively, +2 frameshifted human mitochondrial protein coding genes align with eleven GenBank sequences (31% of the mitochondrial coding regions). These putative overlap genes contain few UARs, AGRs align with arginine. Overlap gene numbers increase in presence of, and with time since evolution of antitermination tRNA AGR in 57 primate mitochondrial genomes. Numbers of putative proteins translated from antisense protein coding sequences and detected by blast also coevolve positively with antitermination tRNAs; expression of two of these ‘antisense’ mRNAs increases under low resource availability. Although more direct evidence is still lacking for the existence of proteins translated from overlapping mitochondrial genes and for antisense tRNAs activity, coevolutions between predicted overlap genes and the antitermination tRNAs required to translate them suggest expression of overlapping genes by an overlapping genetic code. Functions of overlapping genes remain unknown, perhaps originating from dual lifestyles of ancestral free living-parasitic mitochondria. Their amino acid composition suggests expression under anaerobic conditions.  相似文献   

6.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

7.
tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.  相似文献   

8.
The sequence of three tRNAs from Halobacterium cutirubrum have been determined. The sequences of tRNAValGAC and tRNAValCAC differ by only one nucleotide which is in the 5' terminal anticodon position. These tRNAs as well as that of tRNAAlaCGC are compared to other known halobacterial tRNAs. An observed paucity (or absence) of U in the first anticodon position is unique to archaebacterial tRNAs and may be indicative of unusual decoding properties of these organisms.  相似文献   

9.
Administration of estradiol to ovariectomized mature rats for 1 h induces a transient increase in the peptide elongation rate on uterine ribosomes. An inhibitor of the peptide elongation rate, which appears to be regulated by estrogen treatment in vivo, can be extracted from ribosomes of estrogen-deprived rats. The extracted inhibitor or a native inhibitor-ribosome complex affects the rate of the peptide elongation reaction in a uterine cell-free protein synthesis system by inhibiting the ability of selected tRNAs in the assay to be charged with amino acids by their respective aminoacyl-tRNA synthetases. The degree of inhibition of charging of the affected tRNAs ranges from 22% to 78%, the order of inhibition being Pro greater than Val greater than Arg greater than Try greater than Leu greater than Glu greater than Ile greater than Gly greater than His greater than Ser greater than Lys. Inhibition results from a specific dose-dependent, and presumably reversible, effect of the inhibitor on tRNA, but not on the aminoacyl-tRNA synthetase. The effect does not result from removal of A-C-C terminal nucleotides from the 3' end of tRNA, but does inhibit the ability of selected tRNAs to bind to the aminoacyl-tRNA synthetases. We propose that regulation of the peptide elongation rate on uterine ribosomes by estradiol occurs through the estradiol-induced inactivation of a ribosome-associated inhibitor, which causes a reversible alteration to selected tRNAs. The modified tRNAs are unable to bind to their respective aminoacyl-tRNA synthetase to become charged with an amino acid thus causing the availability of selected aminoacyl-tRNAs to become rate-limiting in the sequential elongation of peptides.  相似文献   

10.
11.
12.
13.
A number of experimental approaches have been developed for identification of recognition (identity) sites in tRNAs. Along with them a theoretical methodology has been proposed by McClain et al that is based on concomitant analysis of all tRNA sequences from a given species. This approach allows an evaluation of nucleotide combinations present in isoacceptor tRNAs specific for the given amino acid, and not present in equivalent positions in cloverleaf structure in other tRNAs of the same organism. These elements predicted from computer analysis of the databank could be tested experimentally for their participation in forming recognition sites. The correlation between theoretical predictions and experimental data appeared promising. The aim of the present work consisted of introducing further improvements into McClain's procedure by: i), introducing into analysis a variable region in tRNAs which had not been previously considered; to accomplish this, 'normalization' of variable nucleotides was suggested, based on primary and tertiary structures of tRNAs; ii), developing a new procedure for comparison of patterns for synonymous and non-synonymous tRNAs from different organisms; iii), analysis of 3- and 4-positional contacts between tRNAs and enzymes in addition to a formerly used 2-positional model. A systematic application of McClain's procedure to mammalian, yeast and E coli tRNAs led to the following results: i), imitancy patterns for non-synonymous tRNAs of any amino acid specificity and from any organisms analysed so far overlap by no more than 30%, providing a structural basis for discrimination with high fidelity between cognate and non-cognate tRNAs; ii), the predicted identity sites are non-randomly distributed within tRNA molecules; the dominant role is ascribed to only two regions--anticodon and amino acid stem which are located far apart from one another at extremes of all tRNA molecules; iii), the imitancy patterns for synonymous tRNAs in lower (yeast) and higher (mammalian) eukaryotes are similar but not identical; iv), distribution of predicted identity sites in the cloverleaf structure in prokaryotes and eukaryotes is essentially different: in eubacterial tRNAs the major role in recognition plays anticodon and/or amino acid acceptor stem, whereas in eukaryotic (both unicellular and multicellular) tRNAs the remaining part of the molecules is also involved in recognition; v), the imitancy patterns of synonymous tRNAs from prokaryotes and eukaryotes are dissimilar, this observation leads to the prediction that the tRNA identity sites for the same amino acid in prokaryotes and eukaryotes may differ.  相似文献   

14.
Chloroplasts are semiautonomous organelles found in photosynthetic plants. The major functions of chloroplasts include photosynthesis and carbon fixation, which are mainly regulated by its circular genomes. In the highly conserved chloroplast genome, the chloroplast transfer RNA genes (cp tRNA) play important roles in protein translation within chloroplasts. However, the evolution of cp tRNAs remains unclear. Thus, in the present study, we investigated the evolutionary characteristics of chloroplast tRNAs in five Adoxaceae species using 185 tRNA gene sequences. In total, 37 tRNAs encoding 28 anticodons are found in the chloroplast genome in Adoxaceae species. Some consensus sequences are found within the Ψ‐stem and anticodon loop of the tRNAs. Some putative novel structures were also identified, including a new stem located in the variable region of tRNATyr in a similar manner to the anticodon stem. Furthermore, phylogenetic and evolutionary analyses indicated that synonymous tRNAs may have evolved from multiple ancestors and frequent tRNA duplications during the evolutionary process may have been primarily caused by positive selection and adaptive evolution. The transition and transversion rates are uneven among different tRNA isotypes. For all tRNAs, the transition rate is greater with a transition/transversion bias of 3.13. Phylogenetic analysis of cp tRNA suggested that the type I introns in different taxa (including eukaryote organisms and cyanobacteria) share the conserved sequences “U‐U‐x2‐C” and “U‐x‐G‐x2‐T,” thereby indicating the diverse cyanobacterial origins of organelles. This detailed study of cp tRNAs in Adoxaceae may facilitate further investigations of the evolution, phylogeny, structure, and related functions of chloroplast tRNAs.  相似文献   

15.
16.
Most tRNAs share a common secondary structure containing a T arm, a D arm, an anticodon arm and an acceptor stem. However, there are some exceptions. Most nematode mitochondrial tRNAs and some animal mitochondrial tRNAs lack the T arm, which is necessary for binding to canonical elongation factor Tu (EF-Tu). The mitochondria of the nematode Caenorhabditis elegans have a unique EF-Tu, named EF-Tu1, whose structure has supplied clues as to how truncated tRNAs can work in translation. EF-Tu1 has a C-terminal extension of about 60 aa that is absent in canonical EF-Tu. Recent data from our laboratory strongly suggests that EF-Tu1 recognizes the D-arm instead of the T arm by a mechanism involving this C-terminal region. Further biochemical analysis of mitochondrial tRNAs and EF-Tu from the distantly related nematode Trichinella spp. and sequence information on nuclear and mitochondrial DNA in arthropods suggest that T-armless tRNAs may have arisen as a result of duplication of the EF-Tu gene. These studies provide valuable insights into the co-evolution of RNA and RNA-binding proteins.  相似文献   

17.
18.
The transfer ribonucleic acids (tRNAs) of B. subtilis at different growth phases are examined for changes in the composition and the methylation of minor constituents. The composition of the tRNAs indicates about equal amounts of adenosine and uridine, and of guanosine and cytidine. About 3-4 residues are present as modified bases in the average tRNA molecule. The net composition of tRNAs appears to remain unaltered during different growth phases. In vitro methylation of tRNAs indicates lack of methyl groups in both exponentially growing cells and spores. In vivo methylation studies show tRNA methylation occurs during the stationary phase in the absence of net tRNA synthesis. Thus, both in vitro and in vivo methylation indicates that the tRNAs in exponentially growing cells do not contain their full complement of modified bases. More complete modification is noted in tRNAs from stationary cells or spores. Hence, tRNA modifications in general are preserved with fidelity even in the dormant spore but the possibility is left open that specific modifications of selected isoacceptors of tRNAs may occur.  相似文献   

19.
Increased proliferation and elevated levels of protein synthesis are characteristics of transformed and tumor cells. Though components of the translation machinery are often misregulated in cancers, what role tRNA plays in cancer cells has not been explored. We compare genome-wide tRNA expression in cancer-derived versus non-cancer-derived breast cell lines, as well as tRNA expression in breast tumors versus normal breast tissues. In cancer-derived versus non-cancer-derived cell lines, nuclear-encoded tRNAs increase by up to 3-fold and mitochondrial-encoded tRNAs increase by up to 5-fold. In tumors versus normal breast tissues, both nuclear- and mitochondrial-encoded tRNAs increase up to 10-fold. This tRNA over-expression is selective and coordinates with the properties of cognate amino acids. Nuclear- and mitochondrial-encoded tRNAs exhibit distinct expression patterns, indicating that tRNAs can be used as biomarkers for breast cancer. We also performed association analysis for codon usage-tRNA expression for the cell lines. tRNA isoacceptor expression levels are not geared towards optimal translation of house-keeping or cell line specific genes. Instead, tRNA isoacceptor expression levels may favor the translation of cancer-related genes having regulatory roles. Our results suggest a functional consequence of tRNA over-expression in tumor cells. tRNA isoacceptor over-expression may increase the translational efficiency of genes relevant to cancer development and progression.  相似文献   

20.
Randau L  Pearson M  Söll D 《FEBS letters》2005,579(13):2945-2947
The archaeal parasite Nanoarchaeum equitans was found to generate five tRNA species via a unique process requiring the assembly of seperate 5' and 3' tRNA halves [Randau, L., Munch, R., Hohn, M.J., Jahn, D. and Soll, D. (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 433, 537-541]. Biochemical evidence was missing for one of the computationally-predicted, joined tRNAs designated as tRNA(Trp). Our RT-PCR and sequencing results identify this tRNA as tRNA(Lys) (CUU) joined at the alternative position between bases 30 and 31. We show that the intron-containing tRNA(Trp) was misidentified in the initial Nanoarchaeum equitans genome annotation [E. Waters et al. (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100, 12984-12988]. Along with a previously unidentified joined tRNA(Gln) (UUG), Nanoarchaeum equitans exhibits 44 tRNAs and is enabled to read all 61 sense codons. Features unique to this set of tRNA molecules are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号