首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calsequestrin is a Ca2+-binding protein located intraluminally in the junctional sarcoplasmic reticulum (SR) of striated muscle. In this study, Ca2+ binding to cardiac calsequestrin was assessed directly by equilibrium dialysis and correlated with effects on protein conformation and calsequestrin's ability to interact with other SR proteins. Cardiac calsequestrin bound 800-900 nmol of Ca2+/mg of protein (35-40 mol of Ca2+/mol of calsequestrin). Associated with Ca2+ binding to cardiac calsequestrin was a loss in protein hydrophobicity, as revealed with use of absorbance difference spectroscopy, fluorescence emission spectroscopy, and photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125]iodophenyl)diazirine. Ca2+ binding to cardiac calsequestrin also caused a large change in its hydrodynamic character, almost doubling the sedimentation coefficient. We observed that cardiac calsequestrin was very resistant to several proteases after binding Ca2+, consistent with a global effect of Ca2+ on protein conformation. Moreover, Ca2+ binding to cardiac calsequestrin completely prevented its interaction with several calsequestrin-binding proteins, which we identified in cardiac junctional SR vesicles for the first time. The principal calsequestrin-binding protein identified in junctional SR vesicles exhibited an apparent Mr of 26,000 in sodium dodecyl sulfate-polyacrylamide gels. This 26-kDa calsequestrin-binding protein was greatly reduced in free SR vesicles and absent from sarcolemmal vesicles and was different from phospholamban, an SR regulatory protein exhibiting a similar molecular weight. Our results suggest that the specific interaction of calsequestrin with this 26-kDa protein may be regulated by Ca2+ concentration in intact cardiac muscle, when the Ca2+ concentration inside the junctional SR falls to submillimolar levels during coupling of excitation to contraction.  相似文献   

2.
Calsequestrin is a high-capacity Ca(2+)-binding protein and a major constituent of the sarcoplasmic reticulum (SR) of both skeletal and cardiac muscle. Two isoforms of calsequestrin, cardiac and skeletal muscle forms, have been described which are products of separate genes. Purified forms of the two prototypical calsequestrin isoforms, dog cardiac and rabbit fast-twitch skeletal muscle calsequestrins, serve as excellent substrates for casein kinase II and are phosphorylated on distinct sites (Cala, S.E. and Jones, L.R. (1991) J. Biol. Chem 266, 391-398). Dog cardiac calsequestrin is phosphorylated at a 50 to 100-fold greater rate than is rabbit skeletal muscle calsequestrin, and only the dog cardiac isoform contains endogenous Pi on casein kinase II phosphorylation sites. In this study, we identified and examined both calsequestrin isoforms in rat muscle cultures and homogenates to demonstrate that the cardiac isoform of calsequestrin in rat skeletal muscle was phosphorylated in vivo on sites which are phosphorylated by casein kinase II in vitro. Phosphorylation of rat skeletal muscle calsequestrin was not detected. In tissue homogenates, cardiac and skeletal muscle calsequestrin isoforms were both found to be prominent substrates for endogenous casein kinase II activity with cardiac calsequestrin the preferred substrate. In addition, these studies revealed that the cardiac isoform of calsequestrin was the predominant form expressed in skeletal muscle of fetal rats and cultured myotubes.  相似文献   

3.
Calsequestrin is an acidic Ca2(+)-binding protein of sarcoplasmic reticulum existing as different gene products in cardiac muscle and skeletal muscle. A unique feature of cardiac calsequestrin is a 31-amino acid-long COOH-terminal tail (Scott, B. T., Simmerman, H. K. B., Collins, J. H., Nadal-Ginard, B., and Jones, L. R. (1988) J. Biol. Chem. 263, 8958-8964), which is highly acidic and contains several consensus phosphorylation sites for casein kinase II. In the work described here, we tested whether this cardiac-specific sequence is a substrate for casein kinase II. Both cardiac and skeletal muscle calsequestrins were phosphorylated by casein kinase II, but cardiac calsequestrin was phosphorylated to a higher stoichiometry and at least 50 times more rapidly. The site of rapid phosphorylation of cardiac calsequestrin was localized to the distinct COOH terminus, where a cluster of three closely spaced serine residues are found (S378DEESN-DDSDDDDE-COOH). The slower phosphorylation of skeletal muscle calsequestrin occurred at its truncated COOH terminus, at threonine residue 363 (I351NTEDDDDDE-COOH). The similar sequence in cardiac calsequestrin (I351NTEDDDNEE) was not phosphorylated. Cardiac calsequestrin, as isolated, already contained 1.2 mol of Pi/mol of protein, whereas skeletal muscle calsequestrin contained only trace levels of Pi. The endogenous Pi of cardiac calsequestrin was also localized to the distinct COOH terminus. Our results indicate that the cardiac isoform of calsequestrin is the preferred substrate for casein kinase II both in vivo and in vitro.  相似文献   

4.
5.
Iron-induced oxidative stress is thought to play a crucial role in the pathogenesis of Parkinson's disease. Our previous studies demonstrated that decreased expression of ferroportin 1 contributes to 6-hydroxydopamine induced intracellular iron accumulation and that decreased ferroportin 1 expression is caused by increased expression of iron regulatory protein 1. Iron regulatory protein 1 is a central regulator of iron homeostasis and is a likely target of extracellular agents to program changes in cellular iron metabolism. Therefore, the mechanism of iron regulatory protein 1 upregulation induced by 6-hydroxydopamine has become a significant focus of research. Iron regulatory protein 1 is regulated by protein kinase C, although this regulation is tissue specific. Therefore, in the present study, we aimed to determine whether alteration of protein kinase C activity modified iron regulatory protein 1 expression in the dopaminergic MES23.5 cell line, Furthermore, we investigated whether 6-hydroxydopamine induced iron regulatory protein 1 upregulation is mediated by protein kinase C, thus achieving regulation of cellular iron levels. The results showed that iron regulatory protein 1 was upregulated by phorbol 12-myristate-13-acetate, the PKC activator in dopaminergic MES23.5 cells, and ferroportin 1 expression and iron efflux were decreased as a result of iron regulatory protein 1 upregulation. The protein kinase C inhibitor bisindolylmaleimide I hydrochloride abolished the effect of phorbol 12-myristate-13-acetate. Protein kinase C-δ and protein kinase C-ζ, but not protein kinase C-? were activated by 6-hydroxydopamine. The protein kinase C-δ inhibitor rottlerin inhibited protein kinase C-δ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. The protein kinase C-ζ pseudo-substrate inhibitor inhibited protein kinase C-ζ phosphorylation and abolished iron regulatory protein 1 upregulation induced by 6-hydroxydopamine. These data indicate that iron regulatory protein 1 is regulated by protein kinase C in dopaminergic MES23.5 cells and that protein kinase C activated by 6-hydroxydopamine regulates iron regulatory protein 1 expression, thus achieving regulation of cellular iron levels.  相似文献   

6.
Using Triton X-100/lipid mixed micellar methods, we observed that the adriamycin-iron(III) complex was a potent inhibitor of protein kinase C while uncomplexed adriamycin itself was a poor inhibitor in the absence of heavy metal contaminants. The 3:1 adriamycin-iron complex was more potent than 2:1, 1:1, and 1:0 complexes. Inhibition of protein kinase C was reversible, and 50% inhibition occurred at 13 microM (adriamycin)3Fe3+. Both the catalytic and the regulatory domain of protein kinase C were affected by adriamycin-iron(III). Adriamycin-iron(III) was a competitive inhibitor of the catalytic domain of protein kinase C with respect to MgATP but not with respect to magnesium (IC50 350 microM). The predominant interaction of adriamycin-iron(III) with native protein kinase C was as a competitive inhibitor with respect to diacylglycerol. Inhibition was not competitive with respect to phosphatidylserine, calcium, magnesium, MgATP, or histone. Interaction with the regulatory domain was demonstrated by the ability of adriamycin-iron(III) to inhibit phorbol dibutyrate binding. Other adriamycin transitional metal complexes showed little inhibition of protein kinase C activity. Acetylation of the amine on the daunosamine moeity of adriamycin did not preclude the formation of a ferric complex but resulted in total loss of inhibitory activity. These results suggest that the presence of free amines in a highly structured adriamycin-iron complex is necessary for inhibition. The implications of inhibition of protein kinase C by adriamycin-iron(III) are discussed.  相似文献   

7.
Aminoacridines, potent inhibitors of protein kinase C   总被引:4,自引:0,他引:4  
Acridine orange, acridine yellow G, and related compounds potently inhibited protein kinase C (Ca2+/phospholipid-dependent enzyme) activity and phorbol dibutyrate binding. Inhibition was investigated in vitro using Triton X-100 mixed micellar assays (Hannun, Y. A., Loomis, C. R., and Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043 and Hannun, Y. A., and Bell, R. M. (1986) J. Biol. Chem. 261, 9341-9347). Inhibition by the acridine derivatives was subject to surface dilution; therefore, the relevant concentration unit is mol % rather than the bulk molar concentration. Fifty percent inhibition of protein kinase C activity occurred at concentrations of these compounds comparable to concentrations of sn-1,2-diacylglycerol (DAG) and phosphatidylserine (PS) required for enzyme activation (i.e. 1-6 mol %). The mechanism of inhibition appeared to be complex: both the catalytic and regulatory sites of protein kinase C were affected. Acridine orange was a competitive inhibitor with respect to MgATP when the catalytic fragment of protein kinase C was employed. Inhibition at the active site was overcome by the addition of Triton X-100 micelles or phospholipid vesicles. When the activity of intact protein kinase C was measured, inhibition was noncompetitive with respect to MgATP. Further kinetic analysis suggested a competitive type of inhibition with respect to PS and DAG implying an interaction of acridine compounds with the regulatory lipid cofactors or with the regulatory domain of protein kinase C. This was further supported by demonstrating inhibition of phorbol dibutyrate binding to both protein kinase C and the lipid-binding domain generated by trypsin hydrolysis. Acridine orange and acridine yellow G also inhibited thrombin-induced 40-kDa phosphorylation in human platelets and phorbol dibutyrate binding to platelets. These effects were also subject to surface dilution. These results suggest that acridine derivatives have multiple interactions with protein kinase C with the predominant effect being inhibition of activation within the regulatory domain of the enzyme. Some of the biologic effects of acridine derivatives including anti-tumor action may occur as a consequence of protein kinase C inhibition.  相似文献   

8.
Calreticulin is an abundant endo/sarcoplasmic reticulum (ER/SR) protein that may carry out multiple functions inside cells. Except for calreticulin, all of the major ER/SR Ca2+-binding proteins are substrates for protein kinase CK2 in vitro, which led us to hypothesize that native calreticulin might exist in the phosphorylated form. To investigate this possibility, we purified calreticulin from cardiac microsomes and verified its identity by immunoblot analysis and sequencing of tryptic peptides. Purified calreticulin, like cardiac calsequestrin, contained endogenous phosphate as determined by a Malachite green assay for phosphate. Previous analyses of cardiac calsequestrin have localized phosphate to a single tryptic peptide containing serine phosphate on sites phosphorylated by protein kinase CK2. Using a similar procedure, we analyzed calreticulin tryptic peptides with Malachite green, localizing phosphate binding to a single calreticulin peptide 367LKEEEEDKK. As this peptide contains no phosphorylatable residues, our results suggest that calreticulin may tightly bind phosphate or a phosphate-containing molecule at this site.  相似文献   

9.
The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in?vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21-activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism's response to low nutrients during development, or in adult stem and cancer cells.  相似文献   

10.
Plant cells contain calsequestrin   总被引:5,自引:0,他引:5  
Calsequestrin is a high capacity low affinity Ca2+-binding protein thought to be essential for the function of the intracellular rapid releasable Ca2+ pool of a variety of animal cells. Here we show that two types of plant tissues, cultured Streptanthus tortuosus cells and spinach leaves, contain a form of calsequestrin. In subcellular fractions of S. tortuosus cells, Stains-all staining reveals a metachromatically blue-staining 56,000-Da protein enriched in the microsomal fraction. This protein shares several biochemical characteristics with animal calsequestrin: 1) it changes its apparent molecular weight with the pH; 2) it is able to bind 45Ca2+ on nitrocellulose transfers; and 3) it is recognized by antibodies against canine cardiac calsequestrin. Calsequestrin was also identified in spinach leaves using a direct extraction procedure that was developed for muscle calsequestrin. Thus, our results demonstrate that plant cells contain calsequestrin within a subcellular membrane fraction. These results also suggest that calsequestrin is an ubiquitous protein rather than being limited only to animal cells.  相似文献   

11.
Oligonucleotide-directed mutagenesis was used to produce mutants in the hinge region of the regulatory subunit (R) of the Saccharomyces cerevisiae cAMP-dependent protein kinase. The mutant proteins were expressed in Escherichia coli, purified, urea treated to produce cAMP-free regulatory (R), and analyzed in vitro for catalytic (C) subunit inhibitory activity in the presence and absence of cAMP. When assayed in the absence of cAMP, wild type R dimer inhibited C with an IC50 of 40 nM. Replacement of amino acid residue Ser-145 (the autophosphorylation site of yeast R) with Ala or Gly produced mutants which were 2-10-fold better inhibitors of C, while replacement with Glu, Asp, Lys, or Thr produced mutants which were 2-5-fold worse inhibitors of C relative to wild type R. When assayed in the presence of cAMP, all R subunits had a decreased affinity for C subunit, with Ser-145 and Thr-145 undergoing autophosphorylation. These results suggest that the amino acid at position 145 of R contributes to R-C interaction and therefore influences the equilibrium of yeast protein kinase subunits in vitro.  相似文献   

12.
It is proposed that smooth-muscle endoplasmic reticulum contains calsequestrin and that this protein in smooth muscle resembles cardiac calsequestrin more than the skeletal-muscle form. This proposal is based on seven similarities between the smooth-muscle protein and cardiac calsequestrin. Proteins with an Mr of 55,000 can be extracted from the membranes of smooth muscle and of cardiac muscle using 100 mM Na2CO3. The protein from smooth muscle binds to phenyl-Sepharose in the absence of Ca2+ and is released by 10 mM CaCl2, as has been observed for cardiac calsequestrin. The protein from smooth muscle comigrates with the cardiac calsequestrin on Laemmli-type SDS-polyacrylamide gel electrophoresis. The protein of Mr 55,000 from smooth muscle and cardiac calsequestrin both strain blue with the carbocyanine dye Stains-all. Both proteins present similar one-dimensional Cleveland peptide maps although minor differences might exist. From an analysis of subcellular membranes separated by sucrose gradient centrifugation it is concluded that the protein with Mr 55,000 from the smooth muscle is confined to the endoplasmic reticulum, the same subcellular structure from which, in heart muscle, calsequestrin can be isolated. Antibodies raised against canine cardiac calsequestrin bind to a protein of similar Mr in smooth-muscle endoplasmic reticulum. In addition to the calsequestrin, three other extrinsic proteins with an Mr of 130,000, 100,000 and 63,000, stain blue with Stains-all and occur in the endoplasmic reticulum of smooth muscle.  相似文献   

13.
Genetic Evidence for Pak1 Autoinhibition and Its Release by Cdc42   总被引:10,自引:6,他引:4       下载免费PDF全文
Pak1 protein kinase of Schizosaccharomyces pombe, a member of the p21-GTPase-activated protein kinase (PAK) family, participates in signaling pathways including sexual differentiation and morphogenesis. The regulatory domain of PAK proteins is thought to inhibit the kinase catalytic domain, as truncation of this region renders kinases more active. Here we report the detection in the two-hybrid system of the interaction between Pak1 regulatory domain and the kinase catalytic domain. Pak1 catalytic domain binds to the same highly conserved region on the regulatory domain that binds Cdc42, a GTPase protein capable of activating Pak1. Two-hybrid, mutant, and genetic analyses indicated that this intramolecular interaction rendered the kinase in a closed and inactive configuration. We show that Cdc42 can induce an open configuration of Pak1. We propose that Cdc42 interaction disrupts the intramolecular interactions of Pak1, thereby releasing the kinase from autoinhibition.  相似文献   

14.
Sodium/calcium exchanger (NCX1) macromolecular complex   总被引:8,自引:0,他引:8  
The sodium-calcium exchanger, NCX1, is a ubiquitously expressed membrane protein essential in calcium homeostasis for many cells including those in mammalian heart and brain. The function of NCX1 depends on subcellular ("local") factors, the phosphorylation state of NCX1, and the subcellular location of NCX1 within the cell. Here we investigate the molecular organization of NCX1 within the cardiac myocyte. We show that NCX1 is dynamically phosphorylated by protein kinase A (PKA)-dependent phosphorylation in vitro. We also provide evidence that the regulation of this phosphorylation is attributed to the existence of an NCX1 macromolecular complex. Specifically, we show that the macromolecular complex includes both the catalytic and regulatory subunits of PKA. However, only the RI regulatory subunit is found in this macromolecular complex, not RII. Other critical regulatory enzymes are also associated with NCX1, including protein kinase C (PKC) and two serine/threonine protein phosphatases, PP1 and PP2A. Importantly, the protein kinase A-anchoring protein, mAKAP, is found and its presence in the macromolecular complex suggests that these regulatory enzymes are coordinately positioned to regulate NCX1 as has been found in diverse cells for a number of channel proteins. Dual immunocytochemical staining showed the colocalization of NCX1 protein with mAKAP and PKA-RI proteins in cardiomyocytes. Finally, leucine/isoleucine zipper motifs have been identified as possible sites of interaction. Our finding of an NCX1 macromolecular complex in heart suggests how NCX1 regulation is achieved in heart and other cells. The existence of the NCX1 macromolecular complex may also provide an explanation for recent controversial findings.  相似文献   

15.
A synthesis of previously unknown 8-substituted derivatives and alkyl esters of cyclic adenosine-3',5'-monophosphate, containing reactive groups, was carried out. The interaction of the compounds obtained with a homogeneous preparation of protein kinase from pig brain was studied. It was found that all compounds, with the exception of neutral esters of 3',5'-AMP, activate the enzyme and competitively inhibit 3H-labelled 3',5'-cAMP binding by the regulatory subunit of protein kinase. The activating effect and affinity of 8-(beta-aminoethylamino)-3',5'-cAMP for protein kinase was 10 times lower than that for 3',5'-cAMP and other 8-substituted derivatives of the cyclic nucleotide. It was found that 8-(N-chloroacetylaminoethylamino)-3',5'-cAMP interaction with the enzyme is of irreversible type, which suggest covalent blocking of the nucleophilic group of the 3',5'-cAMP binding site of protein kinase. The data obtained indicate that the 3',5'-cAMP molecule is bound to the regulatory site of protein kinase in the syn-conformation. The previously made assumption on the crucial importance of the negative charge in the 3',5'-cyclophosphate system for the interaction of cyclic AMP with the regulatory subunit of protein kinase has been thus confirmed.  相似文献   

16.
Putative binding sites for zinc are present in the regulatory domain of protein kinase C but a distinct role for zinc has not yet been proposed. Here we show that micromolar concentrations of zinc chloride cause pure rat brain protein kinase C to localize in a detergent-insoluble, cytoskeletal fraction of red cell membranes and to bind to isolated cytoskeleton in the presence of phosphatidylserine. Attachment of protein kinase C to cytoskeleton was accompanied by enhanced expression of binding sites for 3H-phorbol ester, a regulatory ligand of protein kinase C. The active factor in the cytoskeleton was labile to protease suggesting that protein kinase C binds to a cytoskeletal protein.  相似文献   

17.
Kuchin S  Vyas VK  Kanter E  Hong SP  Carlson M 《Genetics》2003,163(2):507-514
The Snf1 protein kinase of the glucose signaling pathway in Saccharomyces cerevisiae is regulated by an autoinhibitory interaction between the regulatory and catalytic domains of Snf1p. Transitions between the autoinhibited and active states are controlled by an upstream kinase and the Reg1p-Glc7p protein phosphatase 1. Previous studies suggested that Snf1 kinase activity is also modulated by Std1p (Msn3p), which interacts physically with Snf1p and also interacts with glucose sensors. Here we address the relationship between Std1p and the Snf1 kinase. Two-hybrid assays showed that Std1p interacts with the catalytic domain of Snf1p, and analysis of mutant kinases suggested that this interaction is incompatible with the autoinhibitory interaction of the regulatory and catalytic domains. Overexpression of Std1p increased the two-hybrid interaction of Snf1p with its activating subunit Snf4p, which is diagnostic of an open, uninhibited conformation of the kinase complex. Overexpression of Std1p elevated Snf1 kinase activity in both in vitro and in vivo assays. These findings suggest that Std1p stimulates the Snf1 kinase by an interaction with the catalytic domain that antagonizes autoinhibition and promotes an active conformation of the kinase.  相似文献   

18.
Filamin A is an established structural component of cell-matrix adhesion sites. In addition, it serves as a scaffold for the subcellular targeting of different signaling molecules. Protein kinase C (PKC) has been found associated with filamin; however, details about this interaction and its significance for cell-matrix adhesion-dependent signaling have remained elusive. We performed a yeast two-hybrid analysis using protein kinase Calpha as a bait and identified filamin as a direct binding partner. The interaction was confirmed in transfected HeLa cells, and serial truncation fragments of filamin A were employed to identify two binding sites on filamin. In vitro ligand binding assays revealed a Ca2+ and phospholipid-dependent association of the regulatory domain of protein kinase C with these sites. Phosphorylation of filamin was found to be isoform-restricted, leading to phosphate incorporation in the C termini of filamin A and C, but not B. PKC-dependent phosphorylation of filamin was also detected in cells. Our data suggest an intimate interaction between filamin and PKC in cell signaling.  相似文献   

19.
The lipid activators of protein kinase C, phosphatidylserine and diacylglycerol, induce a reversible conformational change that exposes the auto-inhibitory pseudosubstrate domain of the enzyme. The pseudosubstrate domain of beta-II protein kinase C is cleaved after the first residue, arginine 19, by the endoproteinase Arg-C only when the kinase is bound to the activating lipid phosphatidylserine. Exposure of this residue is markedly enhanced by diacylglycerol. In contrast, the pseudosubstrate domain is not cleaved in the absence of lipids, when protein kinase C is bound to non-activating acidic lipids, when the kinase has autophosphorylated on the amino terminus, or after dilution of the activating lipids. This work reveals specificity in the interaction of protein kinase C with phosphatidylserine since only this phospholipid causes the specific conformational change detected in the regulatory domain of the enzyme, and demonstrates that allosteric regulators expose the intramolecular auto-inhibitory domain of a kinase.  相似文献   

20.
Modulation of smooth muscle calponin by protein kinase C and calmodulin   总被引:2,自引:0,他引:2  
When smooth muscle calponin was incubated with protein kinase C, 1 mole of phosphate was incorporated per mole of calponin. The apparent Km value for calponin of the protein kinase was about 0.4 microM. The phosphorylation of calponin by protein kinase C was inhibited markedly by calmodulin in a calcium-dependent manner. Kinetic analysis of calmodulin-induced inhibition of calponin phosphorylation by protein kinase C revealed that calmodulin inhibited the phosphorylation in a noncompetitive fashion with calponin and the determined Ki value was 0.4 microM. These results suggest that interaction of calmodulin with calponin may play a regulatory role in the phosphorylation by protein kinase C and smooth muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号