首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that in vitro lipolysis of human very low density lipoproteins (VLDL) by purified bovine milk lipoprotein lipase (LpL) promotes degradation of the apolipoprotein (apo) B moiety of VLDL. Analysis by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis showed that lipolysis of VLDL by purified LpL for 1 h at 37 degrees C induced the selective degradation of the high Mr apo-B (apo-B-100) from most hypertriglyceridemic VLDL and from a few normolipidemic VLDL into several small fragments with molecular weights ranging from 90,000-490,000. No detectable degradation of apo-B occurred in control VLDL when incubated without LpL. The apo-E moiety of VLDL from certain individuals was also degraded following lipolysis of VLDL, and the extent of degradation of apo-B and -E in VLDL was varied among the individual VLDL. The major degradation products of apo-E, identified from the gel, were 31,000- and/or 28,000-Da species. In contrast to the apo-E moiety of VLDL, purified apo-E was not degraded when incubated with LpL. Incubation of low density lipoproteins (LDL) with LpL showed only a minimal effect on the apoproteins of LDL. When high density lipoprotein (HDL) was included in the lipolysis mixture as an acceptor of lipolytic surface remnants, the apoproteins of HDL remained unaltered, while the apo-B moiety of VLDL remnants in the mixture was degraded. Inclusion of protease inhibitors in the lipolysis mixture prevented the degradation of apo-B, but the hydrolysis of VLDL-triglyceride was minimally affected. A selective degradation of apo-B in VLDL also occurred during lipolysis of VLDL when VLDL was perfused through rat hearts. These results suggest that conformational changes in apo-B and apo-E caused by VLDL lipolysis may increase the susceptibility of apo-B and apo-E to degradation by the proteases co-isolated with VLDL. The consequences of the lipolysis-induced degradation of apo-B and apo-E on changes in metabolic properties of VLDL remnants remain to be determined.  相似文献   

2.
Apolipoprotein (apo-) E2 and beta-migrating very low density lipoproteins (beta-VLDL) (which were isolated from type III hyperlipoproteinemic subjects) both demonstrated defective binding to apo-E and apo-B,E receptors on dog liver membranes and to apo-B,E low density lipoproteins (LDL) receptors on fibroblasts. The defective binding activity of the apo-E2 and beta-VLDL varied from very poor to nearly normal. The ability of the beta-VLDL to interact with hepatic apo-E receptors was enhanced by the addition of normal apo-E3 to the beta-VLDL. Furthermore, cysteamine treatment of the apo-E2 in beta-VLDL enhanced binding of the beta-VLDL to both apo-E and apo-B,E receptors. The importance of apo-E in mediating the receptor binding of beta-VLDL to these receptors was confirmed by using monoclonal antibodies. The residual binding activity of beta-VLDL to apo-E and apo-B,E receptors was inhibited by greater than 90% with anti-apo-E, while the addition of anti-apo-B had little effect. The apo-B in the beta-VLDL was capable of binding to apo-B,E receptors after the hydrolysis of the beta-VLDL triglycerides with milk lipoprotein lipase. Lipase treatment yielded, two subfractions of beta-VLDL. One fraction (d = 1.02 to 1.03 g/ml) was enriched with apo-B100; the other fraction (d less than 1.006 g/ml) was enriched with apo-B48 and apo-E2. Significantly increased amounts of the apo-B100-enriched fraction bound to apo-B,E receptors. Inhibition of this binding caused by the addition of anti-apo-B indicated that the binding activity of this subfraction was mediated by apo-B100. The apo-B48-enriched fraction did not show a significant increase in receptor binding, suggesting that apo-B48 does not bind to these receptors. In a control experiment, it was shown that triglyceride-rich VLDL, which contain normal apo-E3 and apo-B100, bind significantly to both liver apo-E receptors and fibroblast apo-B,E receptors. This binding activity was inhibited by greater than 90% with anti-apo-E. Lipase hydrolysis of the VLDL did not further enhance their receptor-binding activity. These results demonstrate that apo-E, and not apo-B, is the major determinant mediating the receptor-binding activity of cholesterol-rich beta-VLDL and triglyceride-rich VLDL.  相似文献   

3.
The immunological characteristics of a very low density lipoproteins (VLDL) from normal and hypercholesterolemic rat sera were compared using polyspecific antisera to VLDL and high density lipoproteins (HDL) and monospecific antisera to apo-B, apo-C, apo-A-I, and apo-E. Ultracentrifugally isolated VLDL from normal serum were studied by immunodiffusion and found to contain both discrete and associated (with apo-B) apo-C and apo-E, probably in the form of lipid-containing lipoproteins. However, immunoelectrophoresis of whole serum revealed only an associated form of the liporpotein having pre-beta mobility (i.e., VLDL), suggesting that the presence of discrete lipoproteins in isolated VLDL, each containing a single apoprotein family, may represent ultracentrifugal artifacts. Ultracentrifugally isolated VLDL from diet-induced hypercholesterolemic rat serum contained only trace amounts of apo-C and large quantities of apo-E, both of which were totally associated with apo-B. VLDL isolated by ultracentrifugation from perfusate of normal and hypercholesterolemic livers contained only associated lipoprotein complexes made up of apo-B, apo-C, and apo-E in the former but only apo-B and apo-E in the latter. These data suggest that normal VLDL are secreted as lipoprotein complexes containing apo-B, apo-C, and apo-E, which may become destabilized in the circulation. However, VLDL from hypercholesterolemic serum shows a marked diminution in the quantity of apo-C as indicated by the relative incorporation of [3H]leucine in vivo and by polyacrylamide gel electrophoresis of apo-VLDL.  相似文献   

4.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

5.
The ability of apolipoprotein (apo-) B48 to interact with lipoprotein receptors was investigated using three different types of lipoproteins. First, canine chylomicron remnants, which contained apo-B48 as their primary apoprotein constituent, were generated by the hydrolysis of chylomicrons with milk lipoprotein lipase. These apo-B48-containing chylomicron remnants are deficient in apo-E and reacted very poorly with apo-E receptors on adult dog liver membranes and the low density lipoprotein (apo-B,E) receptors on human fibroblasts. Addition of normal human apo-E3 restored the receptor binding activity of these lipoproteins. Second, beta-very low density lipoproteins (beta-VLDL) from cholesterol-fed dogs were subfractionated into distinct classes containing apo-E along with either apo-B48 or apo-B100. Both classes bound to the apo-B,E and apo-E receptors. Their binding was almost completely mediated by apo-E, as evidenced by the ability of the anti-apo-E to inhibit the receptor interaction. Third, beta-VLDL from type III hyperlipoproteinemic patients were subfractionated by immunoaffinity chromatography into lipoproteins containing apo-E plus either apo-B48 or apo-B100. Both subfractions bound poorly to apo-B,E and apo-E receptors due to the presence of defective apo-E2. However, the residual binding of the apo-B48-containing and apo-B100-containing human beta-VLDL was inhibited by the anti-apo-E. After lipase hydrolysis, apo-B100 became a more prominant determinant responsible for mediating receptor binding to the apo-B,E receptor. By contrast, lipase hydrolysis did not increase the binding activity of the apo-B48-containing beta-VLDL. These results indicate that apo-B48 does not play a direct role in mediating the interaction of lipoproteins with receptors on fibroblasts or liver membranes.  相似文献   

6.
Incubation of cultured rabbit hepatocytes with beta very low density lipoproteins (beta-VLDL) induces a dose-dependent increase in cell cholesterol (CH) content and VLDL apoprotein (apo) B and E secretion without change in apo-B mRNA level. These data suggest that beta-VLDL may exert a stimulatory effect on hepatic apo-B production at the co-translational and/or posttranslational level.  相似文献   

7.
Timefurone and khellin (10 mg/kg/day, gavage, 14 days) significantly lowered low density lipoprotein cholesterol, high density lipoprotein cholesterol, and total cholesterol. Khellin-induced changes were significantly greater than those induced by timefurone. Neither drug altered body weights or clinical chemistry parameters. Monkeys treated with khellin, however, exhibited elevated levels of very low density lipoprotein cholesterol and marked emesis, while no changes were observed with timefurone. On the basis of these data, timefurone has a better therapeutic ratio and further study with this promising drug appears warranted.  相似文献   

8.
The formation of large cholesterol-enriched high density lipoproteins (HDL1/HDLc) from typical HDL3 requires lecithin:cholesterol acyltransferase activity, additional cholesterol, and a source of apolipoprotein (apo-) E. The present study explores the role of apo-E in promoting HDL1/HDLc formation and in imparting to these lipoprotein particles the ability to interact with the apo-B,E(low density lipoprotein (LDL] receptor. Incubation of normal canine serum with cholesterol-loaded mouse peritoneal macrophages resulted in the formation of HDL1/HDLc that competed with 125I-LDL for binding to the apo-B,E(LDL) receptors on cultured human fibroblasts. Cholesterol efflux from macrophages was necessary because incubation of normal canine serum with nonloaded macrophages did not cause HDL1/HDLc formation. However, cholesterol delivery to the serum was not sufficient to result in HDL1/HDLc formation. Apolipoprotein E had to be available. Incubation of apo-E-depleted canine serum with cholesterol-loaded J774 cells, a macrophage cell line that does not synthesize apo-E, demonstrated that no HDL1/HDLc formation was detected even in the presence of significant cholesterol efflux. However, addition of exogenous apo-E to the serum during the incubation with cholesterol-loaded J744 cells promoted the formation of large receptor-active HDL1/HDLc. The receptor binding activity of these particles produced in vitro correlated with the amount of apo-E incorporated into the HDL1/HDLc. Apolipoproteins A-I and C-III were ineffective in promoting HDL1/HDLc formation; thus, apo-E was unique in allowing HDL1/HDLc formation. These results demonstrate that when lecithin:cholesterol acyltransferase activity, cholesterol, and apo-E are present in serum, typical HDL can be transformed in vitro into large cholesterol-rich HDL1/HDLc that are capable of binding to lipoprotein receptors.  相似文献   

9.
Previous results have demonstrated that liver membranes possess two distinct lipoprotein receptors: a low density lipoprotein (LDL) receptor that binds lipoproteins containing either apolipoprotein (apo-) B or apo-E, and an apo-E-specific receptor that binds apo-E-containing lipoproteins, but not the apo-B-containing LDL. This study reports the isolation and purification of apo-B,E(LDL) and apo-E receptors from canine and human liver membranes. The receptors were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and were partially purified by DEAE-cellulose chromatography. The apo-B,E(LDL) receptor was isolated by affinity chromatography on LDL-Sepharose. The apo-E receptor, which did not bind to the LDL-Sepharose column, was then purified by using an HDLc (cholesterol-induced high density lipoprotein)-Sepharose affinity column and an immunoaffinity column. Characterization of the receptors revealed that the hepatic apo-B,E(LDL) receptor is similar to the extrahepatic LDL receptor with an apparent Mr = 130,000 on non-reducing sodium dodecyl sulfate-polyacrylamide gels. The apo-E receptor was found to be distinct from the apo-B,E(LDL) receptor, with an apparent Mr = 56,000. The purified apo-E receptor displayed Ca2+-dependent binding to apo-E-containing lipoproteins and did not bind to LDL or chemically modified apo-E HDLc. Antibodies raised against the apo-B,E(LDL) receptor cross-reacted with the apo-E receptor. However, an antibody prepared against the apo-E receptor did not react with the apo-B,E(LDL) receptor. The apo-E receptor also differed from the apo-B,E(LDL) receptor in amino acid composition, indicating that the apo-E receptor and the apo-B,E(LDL) receptor are two distinct proteins. Immunoblot characterization with anti-apo-E receptor immunoglobulin G indicated that the apo-E receptor is present in the hepatic membranes of man, dogs, rats, and mice and is localized to the rat liver parenchymal cells.  相似文献   

10.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

11.
Using thrombin and trypsin as probes, we determined: first, that low-density lipoprotein (LDL) receptor binding determinants switch from apolipoprotein (apo) E to apo-B within the very-low-density lipoprotein (VLDL) Sf 20-60 region of the metabolic cascade from VLDL1 (Sf 100-400) of hypertriglyceridemic (HTG) human subjects to LDL. Second, two different conformations of apo-E exist in HTG-VLDL Sf greater than 60, one accessible (greater than or equal to 1 mol/mol of particle) and one inaccessible (1-2 mol/mol) to both thrombin and the LDL receptor; normal VLDL (Sf greater than 60) have only the inaccessible conformation and therefore do not bind to the LDL receptor. Third, thrombin degrades apo-B into large fragments, three of which have electrophoretic mobilities similar to B-48, B-74, and B-26; this, however, has no effect on apo-B-mediated receptor binding. Fibroblast studies showed that thrombin could abolish receptor uptake of HTG-VLDL1 and HTG-VLDL2 (Sf 60-100), had little or no effect on HTG-VLDL3 (Sf 20-60), and no effect on uptake of intermediate-density lipoprotein (IDL) or LDL. Trypsin abolished the binding of HTG-VLDL1 and HTG-VLDL2, reduced that of HTG-VLDL3, but had little to no effect on IDL or LDL binding. Immunochemical techniques revealed that thrombin cleaved some apo-E into the E-22 and E-12 fragments; after trypsin treatment no apo-E was detected in any HTG-lipoprotein. Normal VLDL subclasses contained less apo-E than the corresponding HTG-VLDL subclasses and it was not cleaved by thrombin. Apo-B immunoreactivities of VLDL subclasses were not significantly changed after treatment with thrombin, although thrombin cleaved some of the B-100 of each VLDL subclass, and all apo-B in IDL and LDL, into 4-6 major large fragments. Trypsin converted all of the apo-B of each lipoprotein into smaller fragments (Mr less than 100,000). We conclude that apo-E of the thrombin-accessible conformation mediates uptake of HTG-VLDL1 and HTG-VLDL2 but that apo-B alone is sufficient to mediate receptor binding of IDL and LDL; the switch from apo-E to apo-B as the primary or sufficient binding determinant occurs within the VLDL3 (Sf 20-60) region of the metabolic cascade, where receptor binding first appears in VLDL subclasses from normal subjects.  相似文献   

12.
Hepatocytes obtained from rats fed for 3 days chow (control) or drinking water only (fasted) were used to examine how metabolic state affects lipogenesis, apolipoprotein synthesis, and the capacity to secrete de novo synthesized triacylglycerol. The secretion of triacylglycerol (mass and 3H-labeled via 3H2O incorporation) by both groups of cells was constant for 30 h. Moreover, cells from fasted rats secreted triacylglycerol at rates which were markedly reduced (mass -84%; 3H-labeled -91%). To assess the relative capacities of the two groups of hepatocytes to augment triacylglycerol secretion in response to stimulated lipogenesis, cells were incubated with increasing concentrations of glucose. Control cells responded to glucose by increasing equally the synthesis and secretion of [3H] triacylglycerol. When cells from fasted rats were challenged with glucose, triacylglycerol secretion was not increased. Rather, it accumulated intracellularly. Double-reciprocal plot analysis of the capacity to augment triacylglycerol secretion in response to glucose showed that cells from fasted rats had a greater than 10-fold decrease in V'max. Moreover, fasting changed the synthesis and secretion of apolipoproteins selectively: secretion of low molecular weight apo-B was decreased 50%, large molecular weight apo-B was unchanged, and apo-E was increased 2-4-fold. Analysis of the lipoproteins from both groups of cells on Bio-Gel A-50m showed that the very low density lipoprotein secreted by cells from fasted rats was smaller. In addition, all of the increased de novo synthesized apo-E secreted by cells from fasted rats eluted after the triacylglycerol-rich lipoproteins. The combined data show that: 1) the synthesis of individual very low density lipoprotein apolipoproteins is independently regulated, and 2) the synthesis (availability) of apo-B determines the capacity of the hepatocyte to assemble/secrete triacylglycerol-rich very low density lipoprotein.  相似文献   

13.
Isolated mouse peritoneal macrophages that had been stimulated with thioglycolate were shown to take up and degrade normal human 125I-very low density lipoproteins (VLDL). Uptake occurred via a specific cell surface receptor which was shown to be 1) temperature-dependent, 2) calcium-dependent, and 3) susceptible to proteolytic digestion. The receptor-mediated uptake and degradation of VLDL markedly stimulated the synthesis and accumulation of triglyceride and cholesteryl ester within macrophages. The degradation of the protein and lipid portions of VLDL occurred within lysosomes. Competition studies showed that the binding site for VLDL was different from the receptor for normal low density lipoproteins or for acetylated low density lipoproteins but that there was cross competition with beta-VLDL. In addition, positive charges appeared to play an important role in the recognition of VLDL by their receptors since polyamines were able to markedly inhibit VLDL binding, degradation, and lipid accumulation while negatively charged compounds were without effects. These studies indicate that 1) stimulated mouse peritoneal macrophages possess specific receptors which recognize normal human VLDL and 2) the receptor-mediated uptake of VLDL results in the accumulation of triglyceride and cholesteryl ester within macrophages.  相似文献   

14.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

15.
To identify the domain of apolipoprotein E (apo-E) involved in binding to low density lipoprotein (LDL) receptors on cultured human fibroblasts, apo-E was cleaved and the fragments were tested for receptor binding activity. Two large thrombolytic peptides (residues 1-191 and 216-299) of normal apo-E3 were combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) and tested for their ability to compete with 125I-LDL for binding to the LDL (apo-B,E) receptors on human fibroblasts. The NH2-terminal two-thirds (residues 1-191) of apo-E3 was as active as intact apo-E3 . DMPC, while the smaller peptide (residues 216-299) was devoid of receptor-binding activity. When apo-E3 was digested with cyanogen bromide (CNBr) and the four largest CNBr fragments were combined with DMPC and tested, only one fragment competed with 125I-LDL for binding to cultured human fibroblasts (CNBr II, residues 126-218). This fragment possessed binding activity similar to that of human LDL. The 125I-labeled CNBr II . DMPC complex also demonstrated high affinity, calcium-dependent saturable binding to solubilized bovine adrenal membranes. The binding of CNBr II . DMPC was inhibited by 1,2-cyclohexanedione modification of arginyl residues or diketene modification of lysyl residues. In addition, the CNBr II had to be combined with DMPC before it demonstrated any receptor-binding activity. Pronase treatment of the membranes abolished the ability of this fragment to bind to the apo-B,E receptors. This same basic region in the center of the molecule has been implicated as the apo-B,E receptor-binding domain not only by this study but also by other studies showing that 1) natural mutants of apo-E that display defective binding have single amino acid substitutions at residues 145, 146, or 158; and 2) the apo-E epitope of the monoclonal antibody 1D7, which inhibits apo-E binding, is centered around residues 139-146.  相似文献   

16.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

17.
7-ketocholesterol, one of the major product of autoxidation of dietary cholesterol, was found to inhibit secretion of very low density lipoprotein [14C]cholesterol, [14C]triacylglycerol and [35S]apoprotein B,E,C by cultured human and rabbit hepatocytes. A parallel inhibition (about 35%) of cholesterol synthesis but not of triacylglycerol formation was observed. Incubation with 10 micrograms/ml of oxysterol also reduced the total apo-B secretion measured by ELISA and increased intracellular apo-B mRNA level. These results seem to indicate that 7-ketocholesterol decreases secretion of very low density lipoprotein (VLDL) particles and exerts inhibitory effects on apo-B production at the co-translational or posttranslational level.  相似文献   

18.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

19.
The plasma lipoprotein composition as well as lipoprotein synthesis and secretion were studied in vivo and in a single-pass-perfused liver preparation in lean and obese Zucker rats. Compared with their lean littermates the levels in the plasma of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) + low density lipoprotein (LDL) and high density lipoprotein (HDL) were increased 4-, 2- and 2.5 fold, respectively, in obese rats. In these rats both VLDL and IDL + LDL were enriched in triglycerides, while the HDL were enriched in cholesterol. Although the VLDL and IDL + LDL protein concentrations were the same in lean and obese rats, the HDL protein concentration was 3-fold greater in the obese rats. Both the lean and obese rats incorporated similar amounts of [14C]leucine into total liver protein. However, obese rats incorporated 2.5-fold and 6-fold more [14C]leucine into VLDL and HDL in vivo, 2.7-fold and 1.7 fold more [35S]methionine in VLDL and HDL present in the perfusate, than did lean rats. The perfusate [35S]S-labelled apoproteins (apo-B100, B48; apo-E, apo-AI, apo-AIV and apo-C) were separated by gel electrophoresis and identified by autoradiography. Incorporation of [3H]glycerol into liver, VLDL, IDL + LDL and HDL triglycerides was 2-, 48-, 13- and 1.5-fold higher in obese than in lean rats, respectively. The [3H]-labelled triglycerides in VLDL and IDL + LDL present in the perfusate was 5.4-fold and 4.4-fold more in obese rat. There was no difference in the incorporation of [3H]glycerol into triglycerides of perfusate HDL between the two genotypes of rats. Thus, the hypertriglyceridaemia observed in obese Zucker rats results from very high synthetic rates of both the lipid and protein moieties of plasma lipoproteins. Before this study, no report of the simultaneous triglycerides and protein synthesis in vivo and in a single-pass-perfused liver preparations had been reported.  相似文献   

20.
The hypothesis that the apoprotein composition of nascent very-low-density lipoprotein (VLDL) secreted by the hepatocyte is determined by the relative rates of apoprotein synthesis and their affinities of binding to VLDL was tested using chick hepatocytes in monolayer culture. Chick cells were chosen for the study of lipoprotein assembly since estradiol treatment can be used to alter the composition of the apoprotein mixture synthesized by these cells. The secretion of apoprotein (apo) B by estradiol-treated hepatocytes was elevated 4.2-fold above the basal level measured in control cells. Furthermore, estradiol-treated cells secreted apo-II, a major VLDL apoprotein not synthesized prior to estradiol treatment, at a level equivalent to that of apo-B. However, no difference in the secretion of apo-A-I and other newly identified nascent VLDL apoproteins was detected. These changes in relative rates of apoprotein synthesis altered the composition of nascent VLDL secreted by control versus estradiol-induced cells from: apo-B, 22 to 40%; apo-II, 0 to 32%; apo-37 kDa, 14 to 6%; apo-A-I, 31 to 12%; apo-17 kDa, 10 to 4%; apo-9 kDa, 15 to less than 10%; and apo-6 kDa, 8 to less than 2%. To investigate the basis for the preferential incorporation of apo-B and apo-II into nascent VLDL, the relative affinities of the apoproteins for VLDL were compared by measuring their capacities to transfer from VLDL into other lipoprotein or nonlipoprotein density classes. Culture medium containing [3H]leucine-labeled VLDL was incubated with plasma deficient in lipoproteins of rho less than 1.006 g/ml. Within 30 min of incubation at 37 degrees C, 3H-labeled apo-A-I and apo-9 kDa exchanged between VLDL and high-density lipoprotein, whereas apo-37 kDa exchanged between VLDL and the rho greater than 1.21 g/ml fraction. Neither apo-B nor apo-II underwent transfer from nascent VLDL. These results suggest that the relative rates of input of apoproteins into the secretory pathway and their affinities of binding to the nascent VLDL particle determine their extent of incorporation into, and, thus, the apoprotein composition of secreted VLDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号