首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

2.
This study examined the effect of prostaglandin E2 (PGE2) produced by microsomal prostaglandin E synthase-1 (mPGES-1) on circadian rhythm. Using wild-type mice (WT) and mPGES-1 knockout mice (mPGES-1−/−), I recorded and automatically analyzed the natural behavior of mice in home cages for 24 h and measured brain levels of PGE2. The switch to wakefulness was not smooth, and sleepiness and the total duration of sleep were significantly longer in the mPGES-1−/− mice. Moreover, the basal concentration of PGE2 was significantly lower in the mPGES-1−/− mice. These findings suggest that PGE2 produced by mPGES-1 regulates the onset of wakefulness and the maintenance of circadian rhythm.  相似文献   

3.
Microsomal prostaglandin E(2) synthase (mPGES-1) represents a potential target for novel analgesic and anti-inflammatory agents. High-throughput screening identified several leads of mPGES-1 inhibitors which were further optimized for potency and selectivity. A series of inhibitors bearing a biaryl imidazole scaffold exhibits excellent inhibition of PGE(2) production in enzymatic and cell-based assays. The synthesis of these molecules and their activities will be discussed.  相似文献   

4.
Microsomal prostaglandin E(2) synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E(2) (PGE(2)) from the endoperoxide prostaglandin H( 2) (PGH(2)). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH( 2) substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE(2) produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition.  相似文献   

5.
Recombinant human microsomal prostaglandin E(2) synthase-1 (mPGES-1) was expressed in a baculovirus-Sf9 cell system. The mPGES-1 was solubilized from Sf9 cell membranes with diheptanoylphosphatidylcholine and purified in the presence of octylglucoside using hydroxyapatite column chromatography. The K(m) values of the substrates PGH(2) and GSH were 14 microM and 0.75 mM, respectively, with the purified enzyme. The specific activity (4 micromol/min/mg) was increased 3-5-fold by non-ionic and zwitterionic detergents. Kinetic analysis showed that dodecylmaltoside increases V(max) but does not affect the K(m) values of either substrate. Several other thiol-containing compounds were tested as glutathione replacements, none of which yielded detectable enzyme activity. During enzyme catalysis, glutathione was not oxidized and therefore can be considered an enzyme cofactor. No glutathione transferase or peroxidase activity could be determined with a range of potential substrates. The results show that purified mPGES-1 has a specific activity similar to Cox-2, consistent with its postulated role in Cox-2 mediated PGE(2) formation.  相似文献   

6.
Cellular production of prostaglandins (PGs) is controlled by the concerted actions of cyclooxygenases (COX) and terminal PG synthases on arachidonic acid in response to agonist stimulation. Recently, we showed in an ileal epithelial cell line (IEC-18), angiotensin II-induced COX-2-dependent PGI2 production through p38MAPK, and calcium mobilization (J. Biol. Chem. 280: 1582-1593, 2005). Agonist binding to the AT1 receptor results in activation of PKC activity and Ca2+ signaling but it is unclear how each pathway contributes to PG production. IEC-18 cells were stimulated with either phorbol-12,13-dibutyrate (PDB), thapsigargin (TG), or in combination. The PG production and COX-2 and PG synthase expression were measured. Surprisingly, PDB and TG produced PGE2 but not PGI2. This corresponded to induction of COX-2 and mPGES-1 mRNA and protein. PGIS mRNA and protein levels did not change. Activation of PKC by PDB resulted in the activation of ERK1/2, JNK, and CREB whereas activation of Ca2+ signaling by TG resulted in the delayed activation of ERK1/2. The combined effect of PKC and Ca2+ signaling were prolonged COX-2 and mPGES-1 mRNA and protein expression. Inhibition of PKC activity, MEK activity, or Ca2+ signaling blocked agonist induction of COX-2 and mPGES-1. Expression of a dominant negative CREB (S133A) blocked PDB/TG-dependent induction of both COX-2 and mPGES-1 promoters. Decreased CREB expression by siRNA blocked PDB/TG-dependent expression of COX-2 and mPGES-1 mRNA. These findings demonstrate a coordinated induction of COX-2 and mPGES-1 by PDB/TG that proceeds through PKC/ERK and Ca2+ signaling cascades, resulting in increased PGE2 production.  相似文献   

7.
Objective: Prostaglandin (PG)E2 is a lipid mediator implicated in inflammatory diseases and in the regulation of lipolysis and adipocyte differentiation. This work was, thus, undertaken to study the regulation of the various PGE2 synthases (PGESs) in obesity. Research Methods and Procedures: C57Bl/6 mice were subjected to a high‐fat or regular diet for 12 weeks. The levels of PGE2 in white adipose tissue (WAT) of lean and obese mice were quantified by liquid chromatography‐mass spectrometry, and the change in expression of the three major PGES caused by diet‐induced obesity was characterized by Western blotting. Human preadipocytes and 3T3‐L1 cells were used to assess the expression of microsomal prostaglandin E2 synthase‐1 (mPGES‐1) during adipogenesis. Results: mPGES‐1, mPGES‐2, and cytosolic PGES proteins were all detected in WAT of lean animals. mPGES‐1 was expressed at higher levels in WAT than in any other tissues examined and was more abundant (3‐ to 4‐fold) in epididymal (visceral) compared with inguinal (subcutaneous) WAT. Expression of mPGES‐1 was also detected in undifferentiated and differentiated 3T3‐L1 cells and in human primary subcutaneous preadipocytes at all stages of adipogenesis. The mPGES‐1 protein was substantially down‐regulated in epididymal and inguinal WAT of obese mice, whereas mPGES‐2 and cytosolic PGES remained relatively stable. Concordantly, the PGE2 levels in obese inguinal WAT were significantly lower than those of lean animals. Discussion: These data suggest that mPGES‐1 is the major form of PGESs contributing to the synthesis of PGE2 in WAT and that its down‐regulation might be involved in the alterations of lipolysis and adipogenesis associated with obesity.  相似文献   

8.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

9.
We investigated the tissue distribution and cellular localization of microsomal PGE synthase-1 (mPGES-1) and cyclooxygenase (COX)-1 and -2 in male monkey reproductive organs. Western blotting revealed that monkey mPGES-1 was expressed most intensely in the seminal vesicles, moderately in the testis, and weakly in the epididymis and vas deferens. The tissue distribution profile was quite different from those profiles for rats, rabbits, and pigs, e.g., rat mPGES-1 was the most abundant in the vas deferens, and the rabbit and pig enzymes, in the testis. Immunohistochemical staining with mouse monoclonal anti-human mPGES-1 antibody revealed that monkey mPGES-1 was localized in spermatogonia, Sertoli cells, and primary spermatocytes of testis and in epithelial cells of the epididymis, vas deferens, and seminal vesicles. In monkeys, COX-1 was localized in epithelial cells of the epididymis and vas deferens, whereas COX-2 was dominantly found in epithelial cells of the seminal vesicles.  相似文献   

10.
Recurrent seizures may cause neuronal damage in the hippocampus. As neurons form intimate interactions with astrocytes via glutamate, this neuron-glia circuit may play a pivotal role in neuronal excitotoxicity following such seizures. On the other hand, astrocytes contact vascular endothelia with their endfeet. Recently, we found kainic acid (KA) administration induced microsomal prostaglandin E synthase-1 (mPGES-1) and prostaglandin E(2) (PGE(2)) receptor EP3 in venous endothelia and on astrocytes, respectively. In addition, mice deficient in mPGES-1 exhibited an improvement in KA-induced neuronal loss, suggesting that endothelial PGE(2) might modulate neuronal damage via astrocytes. In this study, we therefore investigated whether the functional associations between endothelia and astrocytes via endothelial mPGES-1 lead to neuronal injury using primary cultures of hippocampal slices. We first confirmed the delayed induction of endothelial mPGES-1 in the wild-type (WT) slices after KA-treatment. Next, we examined the effects of endothelial mPGES-1 on Ca(2+) levels in astrocytes, subsequent glutamate release and neuronal injury using cultured slices prepared from WT and mPGES-1 knockout mice. Moreover, we investigated which EP receptor on astrocytes was activated by PGE(2). We found that endothelial mPGES-1 produced PGE(2) that enhanced astrocytic Ca(2+) levels via EP3 receptors and increased Ca(2+)-dependent glutamate release, aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for neuronal damage after repetitive seizures, and hence could be a new target for drug development.  相似文献   

11.
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.  相似文献   

12.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

13.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

14.
Microsomal prostaglandin E synthase-1 (mPGES-1) has been regarded as an attractive drug for inflammation-related diseases. In search of new mPGES-1 inhibitors, we performed virtual screening using our traditional Chinese medicine and natural products database (http://tcm.cmu.edu.tw/) and constructed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) using a training set of 30 experimentally tested mPGES-1 inhibitors. The CoMFA and CoMSIA models derived were statistically significant with cross-validated coefficient values of 0.808 for CoMFA and 0.829 for CoMSIA and non-cross-validated coefficient values of 0.829 for CoMFA and 0.980 for CoMSIA. Docking and de novo evolution design gave three top derivatives, 2-O-caffeoyl tartaric acid-Evo_2, glucogallin-Evo_1 and 3-O-feruloylquinic acid-Evo_7 that have higher binding affinities than the control, glutathione. These three derivatives have interactions with Arg70, Arg73, Arg110, Arg126 and Arg38, which all are mPGES-1 key active site residues. In addition, these derivatives fit well into the CoMFA and CoMSIA models, with hydrophobic, hydrophilic and electropositive substructures mapped onto corresponding contour plots. Hence, we suggest that these three de novo compounds could be a starting basis for new mPGES-1 inhibitors.  相似文献   

15.
16.
17.
Current evidence suggests that two forms of prostaglandin (PG) E synthase (PGES), cytosolic PGES and membrane-bound PGES (mPGES) -1, preferentially lie downstream of cyclooxygenase (COX) -1 and -2, respectively, in the PGE2 biosynthetic pathway. In this study, we examined the expression and functional aspects of the third PGES enzyme, mPGES-2, in mammalian cells and tissues. mPGES-2 was synthesized as a Golgi membrane-associated protein, and spontaneous cleavage of the N-terminal hydrophobic domain led to the formation of a truncated mature protein that was distributed in the cytosol with a trend to be enriched in the perinuclear region. In several cell lines, mPGES-2 promoted PGE2 production via both COX-1 and COX-2 in the immediate and delayed responses with modest COX-2 preference. In contrast to the marked inducibility of mPGES-1, mPGES-2 was constitutively expressed in various cells and tissues and was not increased appreciably during tissue inflammation or damage. Interestingly, a considerable elevation of mPGES-2 expression was observed in human colorectal cancer. Collectively, mPGES-2 is a unique PGES that can be coupled with both COXs and may play a role in the production of the PGE2 involved in both tissue homeostasis and disease.  相似文献   

18.
A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation.  相似文献   

19.
In this paper we investigated the possible involvement of prostaglandin E synthases (PGESs) in compensatory mechanism. Our findings showed that microsomal (m)PGES-1 expression was significantly up-regulated in COX knock-out (K/O) cells whereas the expression of cytosolic PGES was not changed indicating that the induction of mPGES-1 may, at least in part, contribute to the substantial increase of PGE2 production in COX K/O cell lines. The selective up-regulation of mPGES-1 in COX-2 K/O cells suggests that mPGES-1 may be metabolically coupled with COX-1 for PGE2 formation. Addition of arachidonic acid caused significant induction of mPGES-1 and COX-2 in WT cells, whereas COX-1 and cPGES were not affected. Our earlier and the current studies demonstrate the coregulation of cPLA2, COX, and mPGES-1, in PGE2 synthesis pathway, and that these enzymes contribute to the elevation of PGE2 level when one COX isoform is absent.  相似文献   

20.
A rapid, robust and selective on-line solid-phase extraction-liquid chromatographic method with ultra-violet detection (on-line SPE-LC-UV) for microsomal prostaglandin E(2) synthase-1 (mPGES-1) inhibitor screening was developed and validated. Disrupted A549 cells were used as mPGES-1 source and the formation of prostaglandin E(2) (PGE(2)) out of the substrate prostaglandin H(2) (PGH(2)) was determined at 195 nm. Direct on-line sample clean up was achieved by automated column switch (C18 trap column) prior isocratic separation using a C18 analytical column. The on-line SPE-LC-UV method was accurate, precise and reproducible in the range of 71-1763 ng/ml for PGE(2) and met the generally accepted criteria for bioanalytical methods. The method was successfully applied to determine the IC(50) value of the known mPGES-1 inhibitor NS-398.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号