首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
hFE65L Influences Amyloid Precursor Protein Maturation and Secretion   总被引:1,自引:0,他引:1  
The amyloid precursor protein (APP) is processed in the secretory and endocytic pathways, where both the neuroprotective alpha-secretase-derived secreted APP (APPs alpha) and the Alzheimer's disease-associated beta-amyloid peptide are generated. All three members of the FE65 protein family bind the cytoplasmic domain of APP, which contains two sorting signals, YTS and YENPTY. We show here that binding of APP to the C-terminal phosphotyrosine interaction domain of hFE65L requires an intact YENPTY clathrin-coated pit internalization sequence. To study the effects of the hFE65L/APP interaction on APP trafficking and processing, we performed pulse/chase experiments and examined APP maturation and secretion in an H4 neuroglioma cell line inducible for expression of the hFE65L protein. Pulse/chase analysis of endogenous APP in these cells showed that the ratio of mature to total cellular APP increased after the induction of hFE65L. We also observed a three-fold increase in the amount of APPs alpha recovered from conditioned media of cells overexpressing hFE65L compared with uninduced controls. The effect of hFE65L on the levels of APPs alpha secreted is due neither to a simple increase in the steady-state levels of APP nor to activation of the protein kinase C-regulated APP secretion pathway. We conclude that the effect of hFE65L on APP processing is due to altered trafficking of APP as it transits through the secretory pathway.  相似文献   

2.
Alzheimer's disease is characterized by the deposits of the 4-kDa amyloid beta peptide (A beta). The A beta protein precursor (APP) is cleaved by beta-secretase to generate a C-terminal fragment, CTF beta, which in turn is cleaved by gamma-secretase to generate A beta. Alternative cleavage of the APP by alpha-secretase at A beta 16/17 generates the C-terminal fragment, CTFalpha. In addition to A beta, endoproteolytic cleavage of CTF alpha and CTF beta by gamma-secretase should yield a C-terminal fragment of 57-59 residues (CTF gamma). However, CTF gamma has not yet been reported in either brain or cell lysates, presumably due to its instability in vivo. We detected the in vitro generation of A beta as well as an approximately 6-kDa fragment from guinea pig brain membranes. We have provided biochemical and pharmacological evidence that this 6-kDa fragment is the elusive CTF gamma, and we describe an in vitro assay for gamma-secretase activity. The fragment migrates with a synthetic peptide corresponding to the 57-residue CTF gamma fragment. Three compounds previously identified as gamma-secretase inhibitors, pepstatin-A, MG132, and a substrate-based difluoroketone (t-butoxycarbonyl-Val-Ile-(S)-4-amino-3-oxo-2, 2-difluoropentanoyl-Val-Ile-OMe), reduced the yield of CTF gamma, providing additional evidence that the fragment arises from gamma-secretase cleavage. Consistent with reports that presenilins are the elusive gamma-secretases, subcellular fractionation studies showed that presenilin-1, CTF alpha, and CTF beta are enriched in the CTF gamma-generating fractions. The in vitro gamma-secretase assay described here will be useful for the detailed characterization of the enzyme and to screen for gamma-secretase inhibitors.  相似文献   

3.
4.
Gamma-secretase facilitates the regulated intramembrane proteolysis of select type I membrane proteins that play diverse physiological roles in multiple cell types and tissue. In this study, we used biochemical approaches to examine the distribution of amyloid precursor protein (APP) and several additional gamma-secretase substrates in membrane microdomains. We report that APP C-terminal fragments (CTFs) and gamma-secretase reside in Lubrol WX detergent-insoluble membranes (DIM) of cultured cells and adult mouse brain. APP CTFs that accumulate in cells lacking gamma-secretase activity preferentially associate with DIM. Cholesterol depletion and magnetic immunoisolation studies indicate recruitment of APP CTFs into cholesterol- and sphingolipid-rich lipid rafts, and co-residence of APP CTFs, PS1, and syntaxin 6 in DIM patches derived from the trans-Golgi network. Photoaffinity cross-linking studies provided evidence for the preponderance of active gamma-secretase in lipid rafts of cultured cells and adult brain. Remarkably, unlike the case of APP, CTFs derived from Notch1, Jagged2, deleted in colorectal cancer (DCC), and N-cadherin remain largely detergent-soluble, indicative of their spatial segregation in non-raft domains. In embryonic brain, the majority of PS1 and nicastrin is present in Lubrol WX-soluble membranes, wherein the CTFs derived from APP, Notch1, DCC, and N-cadherin also reside. We suggest that gamma-secretase residence in non-raft membranes facilitates proteolysis of diverse substrates during embryonic development but that the translocation of gamma-secretase to lipid rafts in adults ensures processing of certain substrates, including APP CTFs, while limiting processing of other potential substrates.  相似文献   

5.
Amyloid β-precursor protein (APP) is primarily cleaved by α- or β-secretase to generate membrane-bound, C-terminal fragments (CTFs). In turn, CTFs are potentially subject to a second, intramembrane cleavage by γ-secretase, which is active in a lipid raft-like membrane microdomain. Mature APP (N- and O-glycosylated APP), the actual substrate of these secretases, is phosphorylated at the cytoplasmic residue Thr(668) and this phosphorylation changes the overall conformation of the cytoplasmic domain of APP. We found that phosphorylated and nonphosphorylated CTFs exist equally in mouse brain and are kinetically equivalent as substrates for γ-secretase, in vitro. However, in vivo, the level of the phosphorylated APP intracellular domain peptide (pAICD) generated by γ-cleavage of CTFs was very low when compared with the level of nonphosphorylated AICD (nAICD). Phosphorylated CTFs (pCTFs), rather than nonphosphorylated CTFs (nCTFs), were preferentially located outside of detergent-resistant, lipid raft-like membrane microdomains. The APP cytoplasmic domain peptide (APP(648-695)) with Thr(P)(668) did not associate with liposomes composed of membrane lipids from mouse brain to which the nonphosphorylated peptide preferentially bound. In addition, APP lacking the C-terminal 8 amino acids (APP-ΔC8), which are essential for membrane association, decreased Aβ generation in N2a cells. These observations suggest that the pCTFs and CTFΔC8 are relatively movable within the membrane, whereas the nCTFs are susceptible to being anchored into the membrane, an interaction made available as a consequence of not being phosphorylated. By this mechanism, nCTFs can be preferentially captured and cleaved by γ-secretase. Preservation of the phosphorylated state of APP-CTFs may be a potential treatment to lower the generation of Aβ in Alzheimer disease.  相似文献   

6.
7.
The presenilin (PS)/gamma-secretase system promotes production of the A beta (A beta) peptides by mediating cleavage of amyloid precursor protein (APP) at the gamma-sites. This system is also involved in the processing of type-I transmembrane proteins, including APP, cadherins and Notch1 receptors, at the epsilon-cleavage site, resulting in the production of peptides containing the intracellular domains (ICDs) of the cleaved proteins. Emerging evidence shows that these peptides have important biological functions, raising the possibility that their inhibition by gamma-secretase inhibitors may be detrimental to the cell. Here, we show that peptide E-Cad/CTF2, produced by the PS1/gamma-secretase processing of E-cadherin, promotes the lysosomal/endosomal degradation of the transmembrane APP derivatives, C99 and C83, and inhibits production of the APP ICD (AICD). In addition, E-Cad/CTF2 decreases accumulation of total secreted A beta. These data suggest a novel method to promote the non-amyloidogenic degradation of A beta precursors and to inhibit A beta production.  相似文献   

8.
The adaptor protein FE65 interacts with the beta-amyloid precursor protein (APP) via its C-terminal phosphotyrosine binding (PTB) domain and affects APP processing and Abeta production. Our previous data demonstrate that the apoE receptor ApoEr2 co-precipitated with APP and suggest that there are extracellular and intracellular interactions between these two transmembrane proteins. We hypothesized that FE65 acts as an intracellular link between ApoEr2 and APP. Co-immunoprecipitation experiments in COS7 cells demonstrated an interaction between ApoEr2 and FE65 that depended on the N-terminal PTB domain of FE65. Full-length FE65 increased co-immunoprecipitation of ApoEr2 and APP. Full-length FE65 also increased surface expression of ApoEr2, as determined by surface protein biotinylation and live cell surface staining. Constructs containing both the C- and N-terminal PTB domains of FE65 increased secreted APP, secreted ApoEr2, APP C-terminal fragment, and ApoEr2 C-terminal fragment, but constructs containing only single PTB domains did not affect APP or ApoEr2 processing. In addition, full-length FE65 decreased Abeta to a significantly greater extent than individual FE65 domains. These data suggest that FE65 can bind APP and ApoEr2 at the same time and affect the processing of each.  相似文献   

9.
We previously showed that beta-amyloid precursor protein (APP) is cleaved not only in the middle of the membrane (gamma-cleavage) but also at novel cleavage sites close to the membrane/cytoplasmic boundary (epsilon-cleavage), releasing APP intracellular domains (AICDs) 49-99 and 50-99. To learn more about the relationship between gamma- and epsilon-cleavage, C-terminally truncated carboxyl-terminal fragments (CTFs) of APP, especially CTFs1-48 and 1-49 (the postulated products that are generated by epsilon-cleavage), were transiently expressed in CHO cells. Most importantly, the cells expressing CTF1-49 secreted predominantly amyloid beta-protein (Abeta) 40, while those expressing CTF1-48 secreted preferentially Abeta42. This supports our assumption that epsilon-cleavage precedes Alphabeta production and that preceding epsilon-cleavage determines the preference for the final Abeta species. The gamma-secretase inhibitors, L-685,458 and DAPT, suppressed Abeta production from CTF1-49. Regarding Abeta production from CTF1-48, L-685,458 suppressed it, but DAPT failed to do so. A dominant negative mutant of presenilin 1 suppressed the production of Abeta40 and 42 from both CTFs1-48 and 1-49. These data should shed significant light into the mechanism of Abeta production.  相似文献   

10.
The presenilin 1 (PS1) and PS2 proteins are thought to play roles in processing of amyloid precursor protein (APP), but the nature of this role is not fully understood. Recent studies have shown that PS1 is necessary for cleavage of APP at the gamma-secretase site. We now show that PS1 and PS2 participate in other aspects of APP processing. Fibroblasts generated from PS1 knockout mice have increased levels of the APP cleavage products, secreted APP (APPs), and APP C-terminal fragments, but lower secretion of APPs and Abeta. We have also observed that loss of PS1 prevents protein kinase C or extracellular regulated kinase from increasing production of the APP cleavage products, APPs, and APP C-terminal fragments. Transfection of PS1 -/- cells with PS1 restores the responsiveness of APP processing to protein kinase C and extracellular regulated kinase. This suggests that the changes in APP processing in PS1 -/- cells result strictly from the absence of PS1. Transfection of PS1 -/- cells with PS2 is also able to correct the deficits in APP secretion, which suggests that the PS2 also has the ability to regulate APP processing. Finally, transfection of the truncated PS2 construct, Alg3, into cells lacking PS1 increases APP C-terminal fragments. This suggests that Alg3 can interfere with the processing of APP by PS2. These data point to roles for both PS1 and PS2 in regulating APP processing and suggest that the role of these proteins also includes coupling APP to signal transduction pathways.  相似文献   

11.
Processing of the beta-amyloid precursor protein (APP) plays a key role in Alzheimer disease neuropathogenesis. APP is cleaved by beta- and alpha-secretase to produce APP-C99 and APP-C83, which are further cleaved by gamma-secretase to produce amyloid beta-protein (Abeta) and p3, respectively. APP adaptor proteins with phosphotyrosine-binding domains, including X11alpha (MINT1, encoded by gene APBA1) and X11beta (MINT2, encoded by gene APBA2), can bind to the conserved YENPTY motif in the APP C terminus. Overexpression of X11alpha and X11beta alters APP processing and Abeta production. Here, for the first time, we have described the effects of RNA interference (RNAi) silencing of X11alpha and X11beta expression on APP processing and Abeta production. RNAi silencing of APBA1 in H4 human neuroglioma cells stably transfected to express either full-length APP or APP-C99 increased APP C-terminal fragment levels and lowered Abeta levels in both cell lines by inhibiting gamma-secretase cleavage of APP. RNAi silencing of APBA2 also lowered Abeta levels, but apparently not via attenuation of gamma-secretase cleavage of APP. The notion of attenuating gamma-secretase cleavage of APP via the APP adaptor protein X11alpha is particularly attractive with regard to therapeutic potential given that side effects of gamma-secretase inhibition due to impaired proteolysis of other gamma-secretase substrates, e.g. Notch, might be avoided.  相似文献   

12.
13.
A variety of investigations have led to the conclusion that presenilins (PS) play a critical role in intramembranous, gamma-secretase proteolysis of selected type I membrane proteins, including Notch1 and amyloid precursor protein (APP). We now show that the generation of the S3/Notch intracellular domain and APP-carboxyl-terminal fragment gamma (CTFgamma) derivatives are dependent on PS expression and inhibited by a highly selective and potent gamma-secretase inhibitor. Unexpectedly, the APP-CTFgamma derivative is generated by processing between Leu-645 and Val-646 (of APP(695)), several amino acids carboxyl-terminal to the scissile bonds for production of amyloid beta protein peptides. Although the relationship of APP-CTFgamma to the production of amyloid beta protein peptides is not known, we conclude that in contrast to the highly selective PS-dependent processing of Notch, the PS-dependent gamma-secretase processing of APP is largely nonselective and occurs at multiple sites within the APP transmembrane domain.  相似文献   

14.
The phosphotyrosine interaction (PI) domains (also known as the PTB, or phosphotyrosine binding, domains) of Shc and IRS-1 are recently described domains that bind peptides phosphorylated on tyrosine residues. The PI/PTB domains differ from Src homology 2 (SH2) domains in that their binding specificity is determined by residues that lie amino terminal and not carboxy terminal to the phosphotyrosine. Recently, it has been appreciated that other cytoplasmic proteins also contain PI domains. We now show that the PI domain of X11 and one of the PI domains of FE65, two neuronal proteins, bind to the cytoplasmic domain of the amyloid precursor protein ((beta)APP). (beta)APP is an integral transmembrane glycoprotein whose cellular function is unknown. One of the processing pathways of (beta)APP leads to the secretion of A(beta), the major constituent of the amyloid deposited in the brain parenchyma and vessel walls of Alzheimer's disease patients. We have found that the X11 PI domain binds a YENPTY motif in the intracellular domain of (beta)APP that is strikingly similar to the NPXY motifs that bind the Shc and IRS-1 PI/PTB domains. However, unlike the case for binding of the Shc PI/PTB domain, tyrosine phosphorylation of the YENPTY motif is not required for the binding of (beta)APP to X11 or FE65. The binding site of the FE65 PI domain appears to be different from that of X11, as mutations within the YENPTY motif differentially affect the binding of X11 and FE65. Using site-directed mutagenesis, we have identified a crucial residue within the PI domain involved in X11 and FE65 binding to (beta)APP. The binding of X11 or FE65 PI domains to residues of the YENPTY motif of (beta)APP identifies PI domains as general protein interaction domains and may have important implications for the processing of (beta)APP.  相似文献   

15.
In murine L cells, treatment with calpeptin or calpain inhibitor III increased Abeta42, but not Abeta40, secretion in a dose-dependent fashion. This correlated with an increase in the levels of amyloid precursor protein (APP) carboxyl-terminal fragments (CTFs). Immunoprecipitation with novel mAbs directed against the carboxyl-terminus of APP or specific for the beta-cleaved CTF showed that generation of both alpha- and beta-cleaved CTFs increase proportionately following inhibition of calpains. Pulse-chase metabolic labeling confirmed that inhibiting calpains increases the production of alpha- and beta-cleaved APP metabolites. Immunolabeling showed greater betaCTF signal in calpeptin-treated cells, primarily in small vesicular compartments that were shown to be predominantly endosomal by colocalization with early endosomal antigen 1. A second mAb, which recognizes an extracellular/luminal epitope found on both APP and betaCTFs, gave more cell surface labeling of calpeptin-treated cells than control cells. Quantitative binding of this antibody confirmed that inhibiting calpains caused a partial redistribution of APP to the cell surface. These results demonstrate that 1) calpain inhibition results in a partial redistribution of APP to the cell surface, 2) this redistribution leads to an increase in both alpha- and beta-cleavage without changing the ratio of alphaCTFs/betaCTFs, and 3) the bulk of the betaCTFs in the cell are within early endosomes, confirming the importance of this compartment in APP processing.  相似文献   

16.
Altered production of Aβ (amyloid-β peptide), derived from the proteolytic cleavage of APP (amyloid precursor protein), is believed to be central to the pathogenesis of AD (Alzheimer's disease). Accumulating evidence reveals that APPc (APP C-terminal domain)-interacting proteins can influence APP processing. There is also evidence to suggest that APPc-interacting proteins work co-operatively and competitively to maintain normal APP functions and processing. Hence, identification of the full complement of APPc-interacting proteins is an important step for improving our understanding of APP processing. Using the yeast two-hybrid system, in the present study we identified GULP1 (engulfment adaptor protein 1) as a novel APPc-interacting protein. We found that the GULP1-APP interaction is mediated by the NPTY motif of APP and the GULP1 PTB (phosphotyrosine-binding) domain. Confocal microscopy revealed that a proportion of APP and GULP1 co-localized in neurons. In an APP-GAL4 reporter assay, we demonstrated that GULP1 altered the processing of APP. Moreover, overexpression of GULP1 enhanced the generation of APP CTFs (C-terminal fragments) and Aβ, whereas knockdown of GULP1 suppressed APP CTFs and Aβ production. The results of the present study reveal that GULP1 is a novel APP/APPc-interacting protein that influences APP processing and Aβ production.  相似文献   

17.
Nectin-1 is a member of the immunoglobulin superfamily and a Ca(2+)-independent adherens junction protein involved in synapse formation. Here we show that nectin-1alpha undergoes intramembrane proteolytic processing analogous to that of the Alzheimer's disease amyloid precursor protein, mediated by a presenilin (PS)-dependent gamma-secretase-like activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment of Chinese hamster ovary cells activated a first proteolytic event, resulting in ectodomain shedding of nectin-1alpha. Subsequent cleavage of the remaining 26-kDa membrane-anchored C-terminal fragment (CTF) was inhibited independently by three specific gamma-secretase inhibitors and by expression of the dominant negative form of PS1. The PS/gamma-secretase-like cleavage product was detected in vivo following proteasome inhibitor treatment of cells. An in vitro gamma-secretase assay confirmed the generation of a 24-kDa nectin-1alpha intracellular domain, peripherally associated with the membrane fraction. We also found nectin-1alpha to interact with the N-terminal fragment of PS1. Finally, gamma-secretase inhibition resulted in beta-catenin release from cell junctions, concomitantly with the accumulation of the 26-kDa nectin-1alpha CTF, suggesting that high levels of nectin-1alpha CTF interfere with TPA-induced remodeling of cell-cell junctions. Our results are consistent with a previously reported role for PS/gamma-secretase in adherens junction function involving cleavage of cadherins. Similar to nectin-1, other members of the immunoglobulin superfamily involved in synapse formation may also serve as substrates for PS/gamma-secretase-like intramembrane proteolytic activity.  相似文献   

18.
gamma-Secretase-dependent regulated intramembrane proteolysis of amyloid precursor protein (APP) releases the APP intracellular domain (AICD). The question of whether this domain, like the Notch intracellular domain, is involved in nuclear signalling is highly controversial. Although some reports suggest that AICD regulates the expression of KAI1, glycogen synthase kinase-3beta, Neprilysin and APP, we found no consistent effects of gamma-secretase inhibitors or of genetic deficiencies in the gamma-secretase complex or the APP family on the expression levels of these genes in cells and tissues. Finally, we demonstrate that Fe65, an important AICD-binding protein, transactivates a wide variety of different promoters, including the viral simian virus 40 promoter, independent of AICD coexpression. Overall, the four currently proposed target genes are at best indirectly and weakly influenced by APP processing. Therefore, inhibition of APP processing to decrease Abeta generation in Alzheimer's disease will not interfere significantly with the function of these genes.  相似文献   

19.
20.
Amyloid precursor protein (APP) family members and their proteolytic products are implicated in normal nervous system function and Alzheimer's disease pathogenesis. APP processing and Aβ secretion are regulated by neuronal activity. Various data suggest that NMDA receptor (NMDAR) activity plays a role in both non-amyloidogenic and amyloidogenic APP processing depending on whether synaptic or extrasynaptic NMDARs are activated, respectively. The APP-interacting FE65 proteins modulate APP trafficking and processing in cell lines, but little is known about their contribution to APP trafficking and processing in neurons, either in vivo or in vitro. In this study, we examined the contribution of the FE65 protein family to APP trafficking and processing in WT and FE65/FE65L1 double knockout neurons under basal conditions and following NMDAR activation. We report that FE65 proteins facilitate neuronal Aβ secretion without affecting APP fast axonal transport to pre-synaptic terminals. In addition, FE65 proteins facilitate an NMDAR-dependent non-amyloidogenic APP processing pathway. Generation of high-molecular weight (HMW) species bearing an APP C-terminal epitope was also observed following NMDAR activation. These HMW species require proteasomal and calpain activities for their accumulation. Recovery of APP polypeptide fragments from electroeluted HMW species having molecular weights consistent with calpain I cleavage of APP suggests that HMW species are complexes formed from APP metabolic products. Our results indicate that the FE65 proteins contribute to physiological APP processing and accumulation of APP metabolic products resulting from NMDAR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号