首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical modification of cellulose with triazine derivative, 2,4,6-tri-[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC), was investigated. Micro-FT-IR and nitrogen element analysis were applied to characterize molecular structure of the modified cellulose. The printing properties of the modified cellulose fabric with Tri-HTAC were discussed. Tri-HTAC was able to form covalent bonds with cellulose fibers. The apparent color strength of printed samples with three reactive dyes on the modified cellulose was higher than the corresponding color yields on the unmodified cellulose fabric. Compared with unmodified cellulose, the increases of the color yield were about 6–13%. The fixation rate was accelerated by the modification with Tri-HTAC. The wet rubbing and washing fastnesses of the printed cellulose fabrics modified with Tri-HTAC were better than those of the printed unmodified cellulose fabric. The modified cellulose with Tri-HTAC imparted good printing properties.  相似文献   

2.
Yang Y  Jin D  Wang G  Wang S  Jia X  Zhao Y 《Bioresource technology》2011,102(16):7429-7436
The performance of unmodified and cetyldimethylethyl ammonium bromide (CDAB) modified nonviable Aspergillus oryzae for removal of Acid Blue 25 (AB 25) and Acid Red 337 (AR 337) was investigated in single and binary systems. In single system, the biosorption capacities of CDAB-modified biosorbent reached 160.36 and 280.39 mg g−1 for AB 25 and AR 337, respectively, which were 1.52 and 1.66 times higher than that of unmodified biosorbent. In binary system, the biosorption capacities of unmodified and CDAB-modified biosorbents for both dyes decreased significantly compared to that in single system. Relative competitiveness analysis demonstrated that there existed critical initial concentration ratio which determined the predominance of dyes during biosorption process. The biosorption of AB 25 was found to be in dominant position at initial concentration ratio of [AB 25]/[AR 337] above 0.63. Kinetic analysis indicated that intraparticle diffusion was the limiting step for biosorption of two dyes onto biosorbents.  相似文献   

3.
In this study, ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) and L-lactide (L-LA) has been performed from cellulose fibers. The hydroxyl groups on cellulose act as initiators in the polymerization, and the polymers are covalently bonded to the cellulose fiber. As an attempt to introduce more available hydroxyl groups on the surface, and thereby obtain higher grafting efficiency in the ROP of epsilon-CL and L-LA, unmodified paper was modified with xyloglucan-bis(methylol)-2-methylpropanamide (XG-bis-MPA) and 2,2-bis(methylol)propionic acid (bis-MPA), respectively. The grafted substrates were characterized via Fourier transform infrared spectroscopy (FTIR), contact angle measurement, atomic force microscopy, and enzymatic degradation. The results showed a successful grafting of poly(epsilon-caprolactone) (PCL) and poly(L-lactic acid) (PLLA) from the cellulose fiber surfaces. Furthermore, the results showed an improved grafting efficiency after activation of the cellulose surface with bis-MPA, and showed that the amount of grafted polymer could be controlled by the ratio of added free initiator to monomer.  相似文献   

4.
Cellulase was modified with amphilic copolymers made of alpha-allyl-omega-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
We introduce quantitative polymerase chain reaction (qPCR) primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA) molecule at the 5'-end. In qPCR, the 5'-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5'-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5'-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5'-o-TINA modified primers allows for a further reduction (>45% or approximately one hour) in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5'-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5'-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions.  相似文献   

6.
采用试剂y-氯丙基三乙氧基硅烷(cvrEs)对介孔硅材料SBA-15进行表面改性,并通过红外图谱(FT-IR)和N2吸附脱附等温图(BET)对其进行表征。结果表明:改性前原材料的比表面积为460.9m2/g,改性后材料比表面积提高到512.0m2/g。利用改性前和改性后的SBA-15对猪胰脂肪酶进行固载实验,并对实验结果进行比较,发现改性后的SBA-15在脂肪酶活性、pH环境适应性、热耐受性和可操作性都优于改性前的SBA-15,在最优条件下的酶活力提高超过60%。  相似文献   

7.
The cellulose/silica hybrid (CSH) was prepared by sol–gel crosslinking process. 2,4,6-tri [(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) was used as crosslinking agent in the sol–gel process. The dyeing properties of the cellulose/silica hybrid with the traditional reactive dyes were discussed by reflectance spectra, color yield (K/S) and the colorimetric data of CIELAB. SEM analysis was used to characterize surface structure of the cellulose/silica hybrid. The results show that the cellulose/silica hybrid could be dyed with traditional reactive dyes. The dyeing process for the cellulose/silica hybrid quickly reached equilibrium. K/S of three different color dyes on cellulose/silica hybrid was much higher than those of them on the traditional cellulose. Cellulose/silica hybrid imparted excellent fastness properties. After dyeing, the reflectance spectra curves and the minimum reflectance wavelengths of the dyed cellulose/silica hybrid and cellulose fabrics had not noticeable change.  相似文献   

8.
We investigate the interaction between dipalmitoylphosphatidylcholine (DPPC) and a nitroxide spin label in order to understand its influences on lipid structure and dynamics using molecular dynamics simulations. The system was modified by covalently attaching nitroxide spin labels to the headgroups of two DPPC molecules. (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) (MTSL) was used as the spin label. The label position and dynamics were analyzed as was the impact of the modified DPPC on the structure of the surrounding lipids. The modified DPPC molecules locate closer to the center of the membrane than unmodified DPPC molecules. The rotation of the spin label is unrestricted, but there are favored orientations. MTSL depresses the deuterium order parameters of the carbon atoms close to the headgroup in surrounding DPPC molecules. The spin label has no impact on order parameters of carbon atoms at the end of the lipid tails. The lateral diffusion constant of the modified DPPC is indistinguishable from unmodified DPPC molecules. These novel computational results suggest an experimental validation.  相似文献   

9.
L Zheng  C Zhu  Z Dang  H Zhang  X Yi  C Liu 《Carbohydrate polymers》2012,90(2):1008-1015
Cellulose was isolated from corn stalk and modified by graft copolymerization to produce an absorbent material (AGCS-cell), which was characterized by scanning electron microscope and energy disperse spectroscopy (SEM-EDS), X-ray diffraction (XRD) and solid-state CP/MAS (13)C NMR. The results showed that AGCS-cell had better adsorption potential for cadmium ion than unmodified cellulose because of the addition of functional groups (CN and OH groups) and the lower crystallinity. The Langmuir isotherms gave the best fit to the data and gave an adsorption capacity was 21.37mgg(-1), which was close to unpurified cellulose (AGCS) and reflected the feasibility of using AGCS-cell as an adsorbent to remove cadmium ions.  相似文献   

10.
Due to the difficulty of separating mixtures of labeled and unlabeled biomolecules, a general new method for the affinity purification of modified proteins has been developed. A Sepharose-based solid support bearing beta-cyclodextrin groups was used to capture chromophore-modified proteins selectively, while unmodified proteins remained in solution. After isolation of the resin, the modified proteins were released by treating the sample with a competitive cyclodextrin binder, such as adamantane carboxylic acid. This procedure was demonstrated for several dyes displaying a wide range of spectral characteristics and diverse chemical structures. Preliminary studies have shown that this method can also be used to enrich modified peptide fragments present in proteolytic digests. This technique is anticipated to accelerate the development of new protein modification reactions and could provide a useful tool for proteomics applications.  相似文献   

11.
用化学修饰研究了菌紫质(BR)的结构和功能的变化。用氮氧自由基分别对赖氨酸和丝氨酸进行修饰,研究结果表明在圆二色谱上(CD谱),与天然紫膜样品比较,两种自由基分别修饰赖氨酸(Lys)和丝氨酸(Ser)残基24小时后的CD谱中均只有负峰,分别在596nm和602nm,535nm的正峰已消失,72小时后535nm的正峰部分地恢复,但120小时后均未见进一步恢复。与未修饰的紫膜相比,两种自由基修饰的紫膜在Raman光谱上观察到中间体M412的相对量要明显增加。本文对这二种化学修饰引起的BR结构和功能变化进行了初步讨论。  相似文献   

12.
《Biosensors》1989,4(6):349-359
The chemical modification of cellulose acetate by acylation of the C-2 position produces a membrane that is more hydrophobic and biocompatible. The efficacy of this membrane in biosensor applications is compared with the unmodified cellulose acetate membrane.  相似文献   

13.
应用医用吸附剂直接吸附血浆中的TNFα是一种高效的分离方法,选用8种不同结构和性质的氨基酸修饰大孔吸附树脂NK-110,通过对TNFα吸附量的测定,吸附动力学曲线和吸附等温线的描述等方法,研究了经修饰后大孔吸附树脂对血浆中TNFα的吸附性能,结果表明:1.半胱氨酸饰的NK-110对TNFα的吸附量高,静态吸附120 min时达7683.80u/mL.其吸附动力学曲线表明,经半胱氨酸修饰后,相同时间内吸附量更高,且二者吸附量有差别(P<0.01)。3.由吸附等温线可见NK-110对血浆中TNFα的吸附量随着溶液浓度的升高而升高,但其吸附率随之呈降低趋势,经半胱氨基酸修饰后,其吸附量随着TNFα浓度的升高而升高,吸附率基本不变。  相似文献   

14.
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.  相似文献   

15.
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.  相似文献   

16.
siRNAs against luciferase mRNA were modified with amide-linked oligoribonucleosides (amide-linked RNA) at their 3 '-overhangs. Tm values of the modified siRNAs increased compared with that of the unmodified siRNA. These results indicate that the modified overhangs increase the thermodynamic stability of the siRNAs. The modified overhangs improved stability of siRNAs against degradation by nuclease S1 and 50% mouse plasma. Furthermore the modified siRNAs reduced the target gene expression in a similar manner to the unmodified siRNA in cultured cells. These results suggest that the overhang modifications are tolerated for the siRNA activity.  相似文献   

17.
Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions   总被引:1,自引:0,他引:1  
The regeneration of a solid, crystallized cellulose solution in a N-methylmorpholine-N-oxide (NMMO)-water mixture was studied by measuring the diffusion coefficient of both the water uptake from the regenerating bath and the NMMO outflow to this bath. The diffusion coefficient of water going to the cellulose solution is about 10 times larger than the diffusion coefficient of NMMO leaving the solution. This difference expresses the strongly hygroscopic character of NMMO. None of these coefficients depends on cellulose molecular weight showing that no major rearrangement of cellulose chains occurs at the beginning of the regeneration. The diffusion coefficient of water is not influenced by the cellulose concentration, whereas the diffusion coefficient of NMMO decreases strongly when the cellulose concentration increases. Extrapolating the diffusion coefficient of NMMO versus cellulose concentration to zero shows that the maximal concentration of cellulose in NMMO-water is about 15%. Above this value, undissolved cellulose should be present. From the influence of the NMMO content in the water regenerating bath, it is possible to see that NMMO is removed from the solution if the bath has a NMMO content lower than 60%, to be compared with the 80% NMMO concentration in the solution.  相似文献   

18.
Most studies of cellulose hydrolysis have been carried out on three components of the cellulolytic systems, viz, endoglucanases, exoglucanases, and cellobiases. Little attention has been paid to the fragmentation activity of certain cellulolytic systems. We have noticed that despite being a more powerful degrader of modified cellulose (CMC), the 7-day grown culture filtrate of Myrothecium verrucaria was less effective than that of Trichoderma reesei at degrading pure unmodified cellulose. Scanning electron microscopy imaging showed that one distinguishing feature of the latter is its ability to fragment (macerate) the cellulose. Cellulose particle size decreased with time as it was incubated in the culture filtrate of T. reesei at 37 °C. This was used as a pre-treatment. Pre-treated cellulose was then washed and incubated with fresh T. reesei or M. verrucaria culture filtrates. Pre-treatment increased liberation of reducing sugars during subsequent incubation of cellulose in T. reesei culture filtrate but not in subsequent incubation in M. verrucaria culture filtrate. It was hypothesized that fragmentation activity of the pre-treatment opened up attack sites for further hydrolysis, but these were not available for attack by other enzyme systems.  相似文献   

19.
The regeneration kinetics of cellulose from cellulose--NaOH--water gels immersed in a nonsolvent bath is studied in detail. Cellulose concentration, bath type, and temperature were varied, and diffusion coefficients were determined. The results were compared with data measured and taken from the literature on the regeneration kinetics of cellulose from cellulose--N-methylmorpholine-N-oxide (NMMO) monohydrate solutions. Different theories developed for the transport behavior of solutes in hydrogels or in porous media were tested on the systems studied. While the diffusion of NaOH from cellulose--NaOH--water gels into water has to be described with "porous media" approaches, the interpretation of NMMO diffusion is complicated because of the change of NMMO's state during regeneration (from solid crystalline to liquid) and the high concentration of NMMO in the sample. The activation energies were calculated from diffusion coefficient dependence on temperature for both systems and compared with the ones obtained from the rheological measurements. The activation energy of cellulose--NaOH--water systems does not depend on cellulose concentration or the way of measurement. This result shows that whatever the system is, pure NaOH--water solution, cellulose--NaOH--water solution, or cellulose--NaOH--water gel, it is NaOH hydrate with or without cellulose in solution, which is moving in the system. The swelling of cellulose in different nonsolvent liquids such as water or different alcohols during regeneration was investigated and interpreted using the Hildebrand parameter.  相似文献   

20.
Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号