首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel coccoid-shaped, hyperthermophilic, heterotrophic member of the archaea was isolated from a shallow marine hydrothermal system at Vulcano Island, Italy. The isolate grew between 56 and 90° C with an optimum around 85° C. The pH range for growth was 6.5 to 10.5, with an optimum around 9.0. Polysulfide and elemental sulfur were reduced to H2S. Sulfur stimulated the growth rate. The isolate fermented yeast extract, peptone, meat extract, tryptone, and casein. Isovalerate, isobutyrate, propionate, acetate, CO2, NH3, and H2S (in the presence of S°) were detected as end products. Growth was not inhibited by H2. Based on DNA-DNA hybridization and 16S rRNA partial sequences, the new isolate represents a new species of Thermococcus, which we named Thermococcus alcaliphilus. The type strain is isolate AEDII12 (DSM 10322) Received: 7 July 1995 / Accepted: 25 August 1995  相似文献   

2.
From a shallow marine hydrothermal system at Vulcano (Italy), a new hyperthermophilic member of the Archaea was isolated. The cells are coccoid – shaped and possess up to five flagella. They grow between 56° and 93°C (optimum 85°C) and pH 5.0–9.5 (optimum 9.0). The organism is strictly anaerobic and grows heterotrophically on defined amino acids and complex organic substrates such as casamino acids, yeast extract, peptone, meat extract, tryptone, and casein. Polysulfide and elemental sulfur are reduced to H2S. In the absence of polysulfide or elemental sulfur, the isolate grows at a significantly reduced rate. Growth is not influenced by the presence of H2. DNA–DNA hybridization and 16S rRNA partial sequences indicated that the new isolate belongs to the genus Thermococcus, and represents a new species, Thermococcus acidaminovorans. The type strain is isolate AEDII10 (DSM 11906). Received: September 24, 1997 / Accepted: January 1, 1998  相似文献   

3.
From a hydrothermal vent site off the Mexican west coast (20°50′N, 109°06′W) at a depth of 2,600 m, a novel, hyperthermophilic, anaerobic archaeum was isolated. Cells were round to slightly irregular cocci, 1.2–2.5 μm in diameter and were motile by means of a tuft of flagella. The new isolate grew between 60 and 93°C (optimum: 85°C), from pH 3.5 to 9 (optimum: pH 6.7), and from 0.8 to 8% NaCl (optimum: 2%). The isolate was an obligate organotroph, using chitin, yeast extract, meat extract, and peptone for growth. Chitin was fermented to H2, CO2, NH3, acetate, and formate. H2S was formed in the presence of sulfur. The chitinoclastic enzyme system was oxygen-stable, cell-associated, and inducible by chitin. The cell wall was composed of a surface layer of hex- americ protein complexes arranged on a p6 lattice. The core lipids consisted of glycerol diphytanyl diethers and acyclic and cyclic glycerol diphytanyl tetraethers. The G+C content was 46.5 mol%. DNA/DNA hybridization and 16S rRNA sequencing indicated that the new isolate belongs to the genus Thermococcus, representing a new species, Thermococcus chitonophagus. The type strain is isolate GC74, DSM 10152. Received: 8 May 1995 / Accepted: 26 June 1995  相似文献   

4.
A methanogen, strain AK-1, was isolated from permanently cold marine sediments, 38- to 45-cm below the sediment surface at Skan Bay, Alaska. The cells were highly irregular, nonmotile coccoids (diameter, 1 to 1.2 μm), occurring singly. Cells grew by reducing CO2 with H2 or formate as electron donor. Growth on formate was much slower than that on H2. Acetate, methanol, ethanol, 1- or 2-propanol, 1- or 2-butanol and trimethylamine were not catabolized. The cells required acetate, thiamine, riboflavin, a high concentration of vitamin B12, and peptones for growth; yeast extract stimulated growth but was not required. The cells grew fastest at 25 °C (range 5 °C to 25 °C), at a pH of 6.0 – 6.6 (growth range, pH 5.5 – 7.5), and at a salinity of 0.25 – 1.25 M Na+. Cells of this and other H2-using methanogens from saline environments metabolized H2 to a very low threshold pressure (less than 1 Pa) that was dependent on the methane partial pressure. We propose that the threshold pressure may be limited by the energetics of catabolism. The sequence of the 16S rDNA gene of strain AK-1 was most similar (98%) to the sequences of Methanogenium cariaci JR-1 and Methanogenium frigidum Ace-2. DNA–DNA hybridization between strain AK-1 and these two strains showed only 34.9% similarity to strain JR-1 and 56.5% similarity to strain Ace-2. These analyses indicated strain AK-1 should be classified as a new species within the genus Methanogenium. Phenotypic differences between strain AK-1 and these strains (including growth temperature, salinity range, pH range, and nutrient requirements) support this. Therefore, a new species, Methanogenium marinum, is proposed with strain AK-1 as type strain. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
6.
From an uranium mine three strains of rodshaped, mesophilic, chemolithoautotrophic bacteria were isolated. They grow by oxidation of H2S, galena (PbS) and H2. Anglesite (PbSO4) is formed from galena. No ferrous iron is oxidized by the isolates. They grow between pH 4 and 6.5 at temperatures of about 9 to 41°C (optimum around 27°C). The G+C content of the DNA is around 66 mol %. Based on their ability to oxidize sulfur compounds, the new organisms belong to the genus Thiobacillus. No significant homology with Thiobacillus ferrooxidans and Thiobacillus cuprinus was detected by DNA-DNA hybridization. Therefore the new isolates represent a new species within the genus Thiobacillus. Based on the unusual growth on galena, we name the new species Thiobacillus plumbophilus (type strain Gro 7; DSM 6690).  相似文献   

7.
A novel haloalkaliphilic bacterium designated as strain BNMIITR was isolated from a soil sample collected from Sambhar lake, Rajasthan, in northern India. Colonies of the isolated strain were dark orange and comprised Gram-negative bacilli; there was a slight pleomorphism towards the stationary phase of growth. Experiments revealed that the isolate can grow in the range of 2–5 M NaCl, pH 6–11 and 18–55 °C, with optimum growth observed at 3 M NaCl, pH 8–8.5 and 45 °C. No growth was observed in culture medium without NaCl. The isolate showed no requirement for magnesium sulphate heptahydrate (MgSO4 .7H2O) for growth. Major cellular fatty acids were C 14:0, C 15:0 iso, C 15:0 anteiso, C 16:0, C 17:0 iso, C 17:0 anteiso and C 20:2 w6, 9c. The result of 16S rRNA gene sequence analysis showed 98 % sequence similarity with Halobiforma lacisalsi and Hbf. haloterrestris. Halobiforma sp. strain BNMIITR showed resistance towards several antibiotics and produced an extracellular alkaline protease. The crude enzyme was found to be active in broad range of alkaline pH and temperature (30–80 °C).  相似文献   

8.
A novel thermophilic Gram staining positive strain Rx1 was isolated from hot springs in Baoshan of Yunnan Province, China. The strain was characterized as a hemicellulose-decomposing obligate anaerobe bacterium that is rod-shaped (diameter: 0.5–0.7 μm; length: 2.0–6.7 μm), spore-forming, and motile. Its growth temperature range is 38–68 °C (optimum 50–55 °C) and pH range is 4.5–8.0 (optimum 7.0). The maximum tolerance concentration of NaCl was 3 %. Rx1 converted thiosulfate to elemental sulfur and reduced sulfite to hydrogen sulfide. The bacterium grew by utilizing xylan and starch, as well as a wide range of monosaccharide and polysaccharides, including glucose and xylose. The main products of fermentation were ethanol, lactate, acetate, CO2, and H2. The maximum xylanase activity in the culture supernatant after 30 h of incubation at 55 °C was 16.2 U/ml. Rx1 DNA G + C content was 36 mol %. 16S rRNA gene sequence analysis indicated that strain Rx1 belonged to the genus Thermoanaerobacterium of the family ‘Thermoanaerobacteriaceae’ (Firmicutes), with Thermoanaerobacterium aciditolerans 761–119 (99.2 % 16S rRNA gene sequence similarity) being its closest relative. DNA–DNA hybridization between Rx1 and T. aciditolerans 761–119 showed 36 % relatedness. Based on its physiological and biochemical tests and DNA–DNA hybridization analyses, the isolate is considered to represent a novel species in the genus Thermoanaerobacterium, for which the name Thermoanaerobacterium calidifontis sp. nov. is proposed, with the type strain is Rx1 (=JCM 18270 = CCTCC M 2011109).  相似文献   

9.
The investigated green sulfur bacterium, strain M, was isolated from a sulfidic spring on the Black Sea Coast of the Caucasus. The cells of strain M are straight or curved rods 0.6–0.9 × 1.8–4.2 μm in size. According to the cell wall structure, the bacteria are gram-negative. Chlorosomes are located along the cell periphery. Strain M is an obligate anaerobe capable of photoautotrophic growth on sulfide, thiosulfate, and H2. Acetatate is utilized as an additional carbon source. It utilizes ammonium, urea, casein hydrolysate, and N2 as nitrogen sources and sulfide, thiosulfate, and elemental sulfur as sulfur sources. Bacteriochlorophyll c and the carotenoid chlorobactene are the main pigments. The optimal growth temperature is 25–28°C; the optimal pH is 6.8. The strain does not require NaCl. Vitamin B 12 stimulates growth. The content of the G+C base pairs in the DNA of strain M is 58.3 mol %. In the phylogenetic tree constructed on the basis of analysis of nucleotide sequences of 16S rRNA genes, strain M forms a separate branch, which occupies an intermediate position between the phylogenetic cluster containing representatives of the genus Chlorobaculum (94.9–96.8%) and the cluster containing species of the genus Chlorobium (94.1–96.5%). According to the results of analysis of the amino acid sequence corresponding to the fmo gene, strain M represents a branch which, unlike that in the “ribosomal” tree, falls into the cluster of the genus Chlorobaculum (95.8–97.2%). Phylogenetic analysis of the amino acid sequence corresponding to the nifH gene placed species of the genera Chlorobaculum and Chlorobium into a single cluster, whereas strain M formed a separate branch. The results obtained allow us to describe strain M as a new species of the genus ChlorobacChlorobaculum — Chlorobaculum macestae sp. nov.  相似文献   

10.
A novel Gram-positive, aerobic, actinobacterial strain, CF5/5, was isolated from soil in the Sahara desert, Chad. It grew best at 20–35 °C and at pH 6.0–8.0 and with 0–4 % (w/v) NaCl, forming black-colored colonies. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content was 75.9 mol%. The peptidoglycan contained meso-diaminopimelic acid; galactose and xylose were detected as diagnostic sugars. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, and phosphatidylinositol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were: iso-C16:0 and iso-C15:0. The 16S rRNA gene showed 95.6–98.3 % sequence similarity with the other named members of the genus Geodermatophilus. Based on the polyphasic taxonomy data, the isolate is proposed to represent a novel species, Geodermatophilus saharensis with the type strain CF5/5T = DSM 45423 = CCUG 62813 = MTCC 11416.  相似文献   

11.
A novel Gram-strain positive, aerobic, actinobacterial strain, designated CF11/1T, was isolated from a sand sample obtained in the Sahara Desert, Chad. The black-pigmented isolate was aerobic and exhibited optimal growth from 25 to 35 °C at pH 6.0–8.0 and with 0–8 % (w/v) NaCl, indicating that it is a halotolerant mesophile. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The G+C content in the genome was 74.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and a minor fraction of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone, and galactose was detected as a diagnostic sugar. The major cellular fatty acid was branched-chain saturated acid iso-C16:0. Analysis of 16S rRNA gene sequences showed 95.3–98.6 % pairwise sequence identity with the members of the genus Geodermatophilus. Based on phenotypic and chemotaxonomic properties, as well as phylogenetic distinctiveness, the isolate represents a novel species, Geodermatophilus africanus, with the type strain CF11/1T (DSM 45422 = CCUG 62969 = MTCC 11556).  相似文献   

12.
A new type of gas-vacuolated, sulfate-reducing bacterium was isolated at 10° C from reduced mud (E0 < 0) obtained from a temperate estuary with thiosulfate and lactate as substrates. The strain was moderately psychrophilic with optimum growth at 18–19° C and a maximum growth temperature of 24° C. Propionate, lactate, and alcohols served as electron donors and carbon sources. The organism grew heterotrophically only with hydrogen as electron donor. Propionate and lactate were incompletely oxidized to acetate; traces of lactate were fermented to propionate, CO2, and possibly acetate in the presence of sulfate. Pyruvate was utilized both with and without an electron acceptor present. The strain did not contain desulfoviridin. The G+C content was 48.4 mol%. The differences in the 16S rRNA sequence of the isolate compared with that of its closest phylogenetic neighbors, bacteria of the genus Desulfobulbus, support the assignment of the isolate to a new genus. The isolate is described as the type strain of the new species and genus, Desulforhopalus vacuolatus. Received: 4 March 1996 / Accepted: 17 June 1996  相似文献   

13.
Investigation of iron reduction in bottom sediments of alkaline soda lakes resulted in the isolation of a new obligately anaerobic iron-reducing bacterium, strain Z-0531, from Lake Khadyn (Tuva, Russia) sediment samples. The cells of strain Z-0531 are short (1.0–1.5 by 0.3–0.5 μm), motile, non-spore-forming, gram-negative rods. The isolate is an obligate alkaliphile, developing in the pH range of 7.8–10.0, with an optimum at pH 8.6. It does not require NaCl but grows at NaCl concentrations of 0–50 g/l. It can oxidize acetate with such electron acceptors as amorphous Fe(III) hydroxide (AFH), EDTA-Fe(III), anthraquinone-2,6-disulfonate (quinone), Mn(IV), and S0. On medium with EDTA-Fe(III), the isolate can oxidize, apart from acetate, ethanol, pyruvate, oxalate, arginine, tartrate, lactate, propionate, and serine. H2 is not utilized. The reduced products formed during growth with AFH are siderite or magnetite, depending on the growth conditions. The isolate is incapable of fermenting sugars, peptides, and amino acids. Yeast extract or vitamins are required as growth factors. The organism is capable of dinitrogen fixation and harbors the nifH gene. The DNA G+C content is 55.3 mol %. 16S rRNA analysis places strain Z-0531 into the family Geobacteraceae. Its closest relative (93% similarity) is Desulfuromonas palmitatis. Based on phenotypic distinctions and phylogenetic position, it is proposed that this strain be assigned to the new genus and species Geoalkalibacter ferrihydriticus gen. nov., sp. nov. (Z-0531T-DSMZ-17813-VKMB-2401). Original Russian Text ? D.G. Zavarzina, T.V. Kolganova, E.S. Boulygina, N.A. Kostrikina, T.P. Tourova, G.A. Zavarzin, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 6, pp. 775–785.  相似文献   

14.
A mesophilic, obligately anaerobic, propionate-producing fermentative bacterium, designated strain NM7T, was isolated from rural rice paddy field. Cells of strain NM7T are Gram-negative, non-motile, non-spore-forming, short rods, and negative for catalase. The strain grew optimally at 37 °C (the range for growth 15–40 °C) and pH 7.0 (pH 5.0–7.5). The strain could grow fermentatively on various sugars, including arabinose, xylose, fructose, galactose, glucose, mannose, cellobiose, lactose, maltose, sucrose, pectin and starch. The main end products of glucose fermentation were acetate and propionate. Yeast extract was not required but stimulated the growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, and Fe(III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of genomic DNA was 42.8 mol%. The major cellular fatty acids were C15:0, anteiso-C15:0, C16:0, and C17:0. The most abundant polar lipid of strain NM7T was phosphatidylethanolamine. 16S rRNA gene sequence analysis revealed that it belongs to the family Porphyromonadaceae of the phylum Bacteroidetes. The closest recognized species was Paludibacter propionicigenes (91.4 % similarity in 16S rRNA gene sequence). A novel species, Paludibacter jiangxiensis sp. nov., is proposed to accommodate strain NM7T (=JCM 17480T = CGMCC 1.5150T = KCTC 5844T).  相似文献   

15.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

16.
A novel thermophilic, anaerobic, rod-shaped bacterium strain, designated Buff, was isolated from buffalo-dung samples collected from a buffalo-farm located in Caserta (Campania, south of Italy). Strain Buff was Gram-positive, motile and no spore-forming. The growth temperature range was 40–65°C with an optimum at 60°C, while pH growth range at 60°C was 5.5–8.0 with an optimum at about pH 6.5. NaCl growth concentration ranged from 0 to 2.0% with an optimum at 0.5% (w/v); no growth was observed with the presence of NaCl 3.0% (w/v). The strain produced ethanol, acetate, lactate, H2, H2S and CO2 by glucose fermentation. The DNA G + C content was 34.4 mol%. As determined by 16S rRNA sequence analysis, this organism belonged to the genus Thermoanaerobacterium. On the basis of the physiological and molecular properties, we propose for strain Buff the new species designation Thermoanaerobacterium thermostercus sp. nov. This novel organism represents the first species of the genus Thermoanaerobacterium isolated from buffalo-dung. The type strain is Buff (=DSM 22141 = ATCC BAA-1776).  相似文献   

17.
A Gram-negative, non-endospore-forming, rod shaped, strictly aerobic, moderately halophilic bacterium, designated strain M9BT, was isolated from the hypersaline lake Aran-Bidgol in Iran. Cells of strain M9BT were found to be motile and produce colonies with an orange-yellow pigment. Growth was determined to occur between 5 and 20 % (w/v) NaCl and the isolate grew optimally at 7.5–10 % (v/w) NaCl. The optimum pH and temperature for growth of the strain were determined to be pH 7.0 and 35 °C, respectively, while it was able to grow over pH and temperature ranges of 6–8 and 25–45 °C, respectively. Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain M9BT is a member of the genus Marinobacter. The closest relative to this strain was found to be Marinobacter hydrocarbonoclasticus MBIC 1303T with a similarity level of 97.7 %. DNA–DNA hybridization between the novel isolate and this phylogenetically related species was 13 ± 2 %. The major cellular fatty acids of the isolate were identified as C16:0, C19:1 ω6c, C18:1 ω9c and C16:1 ω9c. The polar lipid pattern of strain M9BT was determined to consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and three phospholipids. Ubiquinone 9 (Q-9) was the only lipoquinone detected. The G+C content of the genomic DNA of this strain was determined to be 58.6 mol%. Phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data suggest that this strain represents a novel species of the genus Marinobacter, for which the name Marinobacter persicus sp. nov. is proposed. The type strain of Marinobacter persicus is strain M9BT (=IBRC-M 10445T = CCM 7970T = CECT 7991T = KCTC 23561T).  相似文献   

18.
A novel sulfate-reducing bacterium designated OPF15T was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70–90 °C and an optimum of 83 °C. Optimal pH was around 6.5–7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15T was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15T representing the type strain.  相似文献   

19.
A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).  相似文献   

20.
The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland. The cells were rod-shaped, motile, and had terminal spores; cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transmission electron microscopy. Strain A3 used a number of carbohydrates as carbon sources, including xylan, but did not utilize microcrystalline cellulose. Fermentation end products were ethanol, acetate, lactate, CO2, and H2. The temperature optimum for growth was between 70 and 75° C, and growth occurred in the range of 50–75° C. The pH range for growth was 4.7–8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G, neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates that strain A3 belongs to the eubacteria. Addition of 50.66 kPa H2 or 2% NaCl did not affect growth. The isolate grew in the presence of exogenously added 4% (w/v) ethanol. The G+C ratio was 37 mol%. 16S rDNA studies revealed that strain A3 belongs to the genus Thermoanaerobacter. Genotypic and phenotypic differences between strain A3 and other related species indicate that strain A3 can be assigned to a new species, and the name Thermoanaerobacter mathranii is proposed. Received: 7 October 1996 / Accepted: 14 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号