首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAP kinase signaling in diverse effects of ethanol   总被引:9,自引:0,他引:9  
Aroor AR  Shukla SD 《Life sciences》2004,74(19):2339-2364
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.  相似文献   

2.
Mitogen-activated protein (MAP) kinase kinase (MAPKK) is a recently characterized activator of MAP kinase (MAPK), and is considered to be regulated by a protooncogene product c-Raf-1. It is, however, unclear whether the signals originating from c-Raf-1 utilize this phosphorylation cascade to lead to oncogenesis. To clarify this point, we isolated rat MAPKK cDNAs, and identified two distinct cDNAs encoding MAPKK and a highly related kinase, both with molecular weights of 5 kDa (MEK1 and MEK2). Genomic Southern blot analyses suggested that MAPKK. may form a large gene family.  相似文献   

3.
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate signaling in many systems and are of increasing interest in cancer. While these are not the only sugars to drive melanoma metastasis, HSPGs play important roles in driving metastatic signaling cascades in melanoma. The ability of these proteins to modulate ligand-receptor interactions in melanoma has been quite understudied. Recent data from several groups indicate the importance of these ligands in modulating key signaling pathways including Wnt and fibroblast growth factor (FGF) signaling. In this review, we summarize the current knowledge regarding the structure and function of these proteoglycans and their role in melanoma. Understanding how HSPGs modulate signaling in melanoma could lead to new therapeutic approaches via the dampening or heightening of key signaling pathways.  相似文献   

4.
成纤维细胞生长因子2(fibroblast growth factor 2,FGF-2)具有多种细胞生物学功能。FGF-2在肿瘤组织中呈高水平表达状态,且可抑制多种化疗药物的促凋亡作用,从而曾为肿瘤细胞存活的重要刺激因素。但也有研究表明FGF-2可诱导部分细胞的分化和凋亡。鉴于FGF-2在肿瘤的发生发展中发挥的重要作用,FGF-2与细胞凋亡的关系及其相应的调节机制成为有待于深入研究和迫切需要解决的问题。本文主要阐述在细胞凋亡通路中,FGF-2关键分子的作用机制及其最新研究进展。  相似文献   

5.
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.  相似文献   

6.
A simple mimetic of a heparan sulfate disaccharide sequence that binds to the growth factors FGF-1 and FGF-2 was synthesized by coupling a 2-azido-2-deoxy-d-glucopyranosyl trichloroacetimidate donor with a 1,6-anhydro-2-azido-2-deoxy-β-d-glucopyranose acceptor. Both the donor and acceptor were obtained from a common intermediate readily obtained from d-glucal. Molecular docking calculations showed that the predicted locations of the disaccharide sulfo groups in the binding site of FGF-1 and FGF-2 are similar to the positions observed for co-crystallized heparin-derived oligosaccharides obtained from published crystal structures.  相似文献   

7.
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury.  相似文献   

8.
9.
Basic fibroblast growth factor (FGF-2) promotes survival and/or neurite outgrowth from a variety of neurons in cell culture and regenerative processes in vivo. FGFs exert their effects by activating cell surface receptor tyrosine kinases. FGF receptor (FGFR) inhibitors have not been characterized on neuronal cell behaviors to date. In the present study, we show that the FGFR1 inhibitor PD 173074 potently and selectively antagonized the neurotrophic and neurotropic actions of FGF-2. Nanomolar concentrations of PD 173074 prevented FGF-2, but not insulin-like growth factor-1, support of cerebellar granule neuron survival under conditions of serum/K(+) deprivation; another FGF-2 inhibitor, SU 5402, was effective only at a 1,000-fold greater concentration. Neither PD 173074 nor SU 5402, at 100 times their IC(50) values, interfered with the survival of dorsal root ganglion neurons promoted by nerve growth factor, ciliary neurotrophic factor, or glial cell line-derived neurotrophic factor. PD 173074 and SU 5402 displayed 1,000-fold differential IC(50) values for inhibition of FGF-2-stimulated neurite outgrowth in PC12 cells and in granule neurons, and FGF-2-induced mitogen-activated protein kinase (p44/42) phosphorylation. The two inhibitors failed to disturb downstream signalling stimuli of FGF-2. PD 173074 represents a valuable tool for dissecting the role of FGF-2 in normal and pathological nervous system function without compromising the actions of other neurotrophic factors.  相似文献   

10.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

11.
12.
The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the mitogen-activated protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for the IBD that evolved from the genetic algorithm. The evolved IBD not only exhibited the required non-monotonic signal strength-response, but also demonstrated transient and sustained responses that properly reflected the input signal strength, dependence on both of the MAPKKs for signaling, phosphorylation site preferences by each of the MAPKKs, and both activation and inhibition resulting from the overexpression of one of the MAPKKs.  相似文献   

13.
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS‐CoV‐2. Notably, neutralizing antibodies against SARS‐CoV‐2 isolated from COVID‐19 patients interfered with SARS‐CoV‐2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS‐CoV‐2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS‐CoV‐2, both DC subsets efficiently captured SARS‐CoV‐2 via heparan sulfate proteoglycans and transmitted the virus to ACE2‐positive cells. Notably, human primary nasal cells were infected by SARS‐CoV‐2, and infection was blocked by pre‐treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS‐CoV‐2 infection.  相似文献   

14.
Specific interactions of growth factors with heparan sulfate may function as "switches" to regulate stages of branching morphogenesis in developing mammalian organs, such as breast, lung, salivary gland and kidney, but the evidence derives mostly from studies of explanted tissues or cell culture (Shah et al., 2004). We recently provided in vivo evidence that inactivation of Ndst1, the predominant N-deacetylase/N-sulfotransferase gene essential for the formation of mature heparan sulfate, results in a highly specific defect in murine lobuloalveolar development (Crawford et al., 2010). Here, we demonstrate a highly penetrant dramatic defect in primary branching by mammary epithelial-specific inactivation of Ext1, a subunit of the copolymerase complex that catalyzes the formation of the heparan sulfate chain. In contrast to Ext1 deletion, inactivation of Hs2st (which encodes an enzyme required for 2-O-sulfation of uronic acids in heparan sulfate) did not inhibit ductal formation but displayed markedly decreased secondary and ductal side-branches as well as fewer bifurcated terminal end buds. Targeted conditional deletion of c-Met, the receptor for HGF, in mammary epithelial cells showed similar defects in secondary and ductal side-branching, but did not result in any apparent defect in bifurcation of terminal end buds. Although there is published evidence indicating a role for 2-O sulfation in HGF binding, primary epithelial cells isolated from Hs2st conditional deletions were able to activate Erk in the presence of HGF and there appeared to be only a slight reduction in HGF-mediated c-Met phosphorylation in these cells compared to control. Thus, both c-Met and Hs2st play important, but partly independent, roles in secondary and ductal side-branching. When considered together with previous studies of Ndst1-deficient glands, the data presented here raise the possibility of partially-independent regulation by heparan sulfate-dependent pathways of primary ductal branching, terminal end bud bifurcation, secondary branching, ductal side-branching and lobuloalveolar formation.  相似文献   

15.
A 26-amino-acid peptide (designated PFNP) composed of the nuclear localization signal of fibroblast growth factor (FGF)-1 and a membrane-permeable peptide is known to mimic FGF-1's ability to stimulate DNA synthesis in various cell types at low cell densities. The underlying molecular mechanism is unknown, however. Here we show that PFNP activity is inhibited in murine fibroblasts by a tyrosine kinase inhibitor, that PFNP does not bind to the FGF receptor, and that PFNP does not induce phosphorylation of the FGF receptor substrate. In addition, expression of a dominant-negative form of Ras, which abolished the activities of epidermal growth factor (EGF) and heparin-binding EGF, had no affect on PFNP-induced DNA synthesis. Despite this apparent Ras independence, PFNP activity correlated with phosphorylation of ERK1/2 MAP kinases and was concentration dependently inhibited by inhibitors of ERK1/2 MAP kinase phosphorylation. These results indicate that whereas Ras activation is dispensable for PFNP-induced DNA synthesis, activation of tyrosine kinases and ERK1/2 kinases, albeit independently of the FGF receptor system, is crucial. Interestingly, FGF-1 signaling was predominantly Ras-independent when the cell density was optimum for PFNP, suggesting that PFNP and FGF-1 share the same signaling mechanism.  相似文献   

16.
During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.  相似文献   

17.
The formation of the glial scar following a spinal cord injury presents a significant barrier to the regenerative process. It is primarily composed of chondroitin sulfate proteoglycans (CSPGs) that can inhibit axonal sprouting and regeneration. Although the inhibitory effects on neurons are well documented, little is known about their effects on oligodendrocyte progenitor cells (OPCs). In this study, we examined the effects of CSPGs on OPC process outgrowth and differentiation in vitro. The results show that specific CSPGs, in particularly those highly up-regulated following spinal cord injury, inhibit OPC process outgrowth and differentiation, and that treatment with chondroitinase ABC can completely reverse this inhibition. Additionally, treatment with the Rho kinase inhibitor Y-27632 also reverses the observed inhibition, implicating the activation of Rho kinase in the CSPG inhibition of OPC growth. Taken together, these findings demonstrate that the CSPGs found within the glial scar are not only inhibitory to neurons, but also to OPCs. Moreover, this study shows that chondroitinase ABC treatment, having shown promise in promoting axonal regeneration, may also enhance remyelination.  相似文献   

18.
19.
Stathmin, a ubiquitous cytosolic phosphoprotei which may play a role in integrating the effects of diverse signals regulating proliferation, differentiation and other cell functions, was found to be phosphorylated rapidly and stoichiometrically by mitogen-activated protein (MAP) kinasein vitro. Ser-25 was identified as the major site and Ser-38 as a minor site of phosphorylation, while the p42 and p44 isoforms of MAP kinase were the only significant stathmin kinases detected in PC12 cells after stimulation by nerve growth factor (NGF). The results suggest that MAP kinases are the enzymes responsible for increasing the level of phosphorylation of Ser-25, which has been observed previously in PC12 cells following stimulation by NGF.Submitted February 1993.  相似文献   

20.
The PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome) identified as a mutated gene in patients with X-linked hypophosphatemia (XLH), encodes a protein (PHEX) that shows striking homologies to members of the M13 family of zinc metallopeptidases. In the present work the interaction of glycosaminoglycans with PHEX has been investigated by affinity chromatography, circular dichroism, protein intrinsic fluorescence analysis, hydrolysis of FRET substrates flow cytometry and confocal microscopy. PHEX was eluted from a heparin-Sepharose chromatography column at 0.8 M NaCl showing a strong interaction with heparin. Circular dichroism spectra and intrinsic fluorescence analysis showed that PHEX is protected by glycosaminoglycans against thermal denaturation. Heparin, heparan sulfate and chondroitin sulfate inhibited PHEX catalytic activity, however among them, heparin presented the highest inhibitory activity (Ki = 2.5 ± 0.2 nM). Flow cytometry analysis showed that PHEX conjugated to Alexa Fluor 488 binds to the cell surface of CHO-K1, but did not bind to glycosaminoglycans defective cells CHO-745. Endogenous PHEX was detected at the cell surface of CHO-K1 colocalized with heparan sulfate proteoglycans, but was not found at the cell surface of glycosaminoglycans defective cells CHO-745. In permeabilized cells, PHEX was detected in endoplasmic reticulum of both cells. In addition, we observed that PHEX colocalizes with heparan sulfate at the cell surface of osteoblasts. This is the first report that the metallopeptidase PHEX is a heparin binding protein and that the interaction with GAGs modulates its enzymatic activity, protein stability and cellular trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号