首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kevin Mowbrey 《FEBS letters》2009,583(23):3738-3745
Often considered a defining eukaryotic feature, the Golgi body is one of the most recognizable and functionally integrated cellular organelles. It is therefore surprising that some unicellular eukaryotes do not, at first glance, appear to possess Golgi stacks. Here we review the molecular evolutionary, genomic and cell biological evidence for Golgi bodies in these organisms, with the organelle likely present in some form in all cases. This, along with the overwhelming prevalence of stacked cisternae in most eukaryotes, implies that the ancestral eukaryote possessed a stacked Golgi body, with at least eight independent instances of Golgi unstacking in our cellular history.  相似文献   

2.
Though representing a major component of eukaryotic biodiversity, many microbial eukaryotes remain poorly studied, including the focus of the present work, testate amoebae of the order Arcellinida (Amoebozoa) and non-model lineages of ciliates (Alveolata). In particular, knowledge of genome structures and changes in genome content over the often-complex life cycles of these lineages remains enigmatic. However, the limited available knowledge suggests that microbial eukaryotes have the potential to challenge our textbook views on eukaryotic genomes and genome evolution. In this study, we developed protocols for DAPI (4′,6-diamidino-2-phenylindole) staining of Arcellinida nuclei and adapted protocols for ciliates. In addition, image analysis software was used to estimate the DNA content in the nuclei of Arcellinida and ciliates, and the measurements of target organisms were compared to those  of well-known model organisms. The results demonstrate that the methods we have developed for nuclear staining in these lineages are effective and can be applied to other microbial eukaryotic groups by adjusting certain stages in the protocols.  相似文献   

3.
All cells secrete a diversity of macromolecules to modify their environment or to protect themselves. Eukaryotic cells have evolved a complex secretory pathway consisting of several membrane-bound compartments which contain specific sets of proteins. Experimental work on the secretory pathway has focused mainly on mammalian cell lines or on yeasts. Now, some general principles of the secretory pathway have become clear, and most components of the secretory pathway are conserved between yeast cells and mammalian cells. However, the structure and function of the secretory system in protists have been less extensively studied. In this review, we summarize the current knowledge about the secretory pathway of five different groups of protists: Giardia lamblia, one of the earliest lines of eukaryotic evolution, kinetoplastids, the slime mold Dictyostelium discoideum, and two lineages within the "crown" of eukaryotic cell evolution, the alveolates (ciliates and Plasmodium species) and the green algae. Comparison of these systems with the mammalian and yeast system shows that most elements of the secretory pathway were presumably present in the earliest eukaryotic organisms. However, one element of the secretory pathway shows considerable variation: the presence of a Golgi stack and the number of cisternae within a stack. We suggest that the functional separation of the plasma membrane from the nucleus-endoplasmic reticulum system during evolution required a sorting compartment, which became the Golgi apparatus. Once a Golgi apparatus was established, it was adapted to the various needs of the different organisms.  相似文献   

4.
The Golgi is an ancient and fundamental eukaryotic organelle. Evolutionary cell biological studies have begun establishing the repertoire, processes, and level of complexity of membrane-trafficking machinery present in early eukaryotic cells. This article serves as a review of the literature on the topic of Golgi evolution and diversity and reports a novel comparative genomic survey addressing Golgi machinery in the widest taxonomic diversity of eukaryotes sampled to date. Finally, the article is meant to serve as a primer on the rationale and design of evolutionary cell biological studies, hopefully encouraging readers to consider this approach as an addition to their cell biological toolbox. It is clear that the major machinery involved in vesicle trafficking to and from the Golgi was already in place by the time of the divergence of the major eukaryotic lineages, nearly 2 billion years ago. Much of this complexity was likely generated by an evolutionary process involving gene duplication and coevolution of specificity encoding membrane-trafficking proteins. There have also been clear cases of loss of Golgi machinery in some lineages as well as innovation of novel machinery. The Golgi is a wonderfully complex and diverse organelle and its continued exploration promises insight into the evolutionary history of the eukaryotic cell.  相似文献   

5.
Oxymonads are closely related to the excavate taxon Trimastix   总被引:3,自引:0,他引:3  
Despite intensive study in recent years, large-scale eukaryote phylogeny remains poorly resolved. This is particularly problematic among the groups considered to be potential early branches. In many recent systematic schemes for early eukaryotic evolution, the amitochondriate protists oxymonads and Trimastix have figured prominently, having been suggested as members of many of the putative deep-branching higher taxa. However, they have never before been proposed as close relatives of each other. We amplified, cloned, and sequenced small-subunit ribosomal RNA genes from the oxymonad Pyrsonympha and from several Trimastix isolates. Rigorous phylogenetic analyses indicate that these two protist groups are sister taxa and are not clearly related to any currently established eukaryotic lineages. This surprising result has important implications for our understanding of cellular evolution and high-level eukaryotic phylogeny. Given that Trimastix contains small, electron-dense bodies strongly suspected to be derived mitochondria, this study constitutes the best evidence to date that oxymonads are not primitively amitochondriate. Instead, Trimastix and oxymonads may be useful organisms for investigations into the evolution of the secondary amitochondriate condition. All higher taxa involving either oxymonads or Trimastix may require modification or abandonment. Affected groups include four contemporary taxa given the rank of phylum (Metamonada, Loukozoa, Trichozoa, Percolozoa), and the informal excavate taxa. A new "phylum-level" taxon may be warranted for oxymonads and Trimastix.  相似文献   

6.
The accurate duplication of cellular organelles is important to ensure propagation through successive generations. The semi-conserved replication of DNA and DNA-containing organelles has been well studied, but the mechanisms used to duplicate most other organelles remain elusive. These include the centrosomes, which act as microtubule organizing centres during interphase and orient the mitotic spindle poles during mitosis. Centrosomes can also act as basal bodies, nucleating the growth of cilia or flagella. Even less understood are the mechanisms used to duplicate membrane-bound organelles that do not contain DNA. These include organelles involved in the secretory pathway such as the endoplasmic reticulum and the Golgi apparatus. This review will summarize the current knowledge of Golgi biogenesis in simple eukaryotic organisms, in particular, two protozoan parasites, Toxoplasma gondii and Trypanosoma brucei.  相似文献   

7.
As compared with other eukaryotic cells, plants have developed an endoplasmic reticulum (ER)-Golgi interface with very specific structural characteristics. ER to Golgi and Golgi to ER transport appear not to be dependent on the cytoskeleton, and ER export sites have been found closely associated with Golgi bodies to constitute entire mobile units. However, the molecular machinery involved in membrane trafficking seems to be relatively conserved among eukaryotes. Therefore, a challenge for plant scientists is to determine how these molecular machineries work in a different structural and dynamic organization. This review will focus on some aspects of membrane dynamics that involve coat proteins, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment receptor proteins), lipids, and lipid-interacting proteins.  相似文献   

8.
Microbial communities of extreme environments have often been assumed to have low species richness. We analysed 18S rRNA gene signatures in a sample collected below the chemocline of the anoxic Mariager Fjord in Denmark, and from these data we computed novel parametric and standard nonparametric estimates of protistan phylotype richness. Our results indicate unexpectedly high richness in this environment: at the 99.5% phylotype definition, our most conservative estimate was 568 phylotypes (+/-114, standard error). Phylogenetic analyses revealed that the sequences collected cover the majority of described lineages in the eukaryotic domain. Out of 384 sequences analysed, 307 were identified as protistan targets, none of which was identical to known sequences. However, based on what is known about species that are phylogenetically related to the Mariager sequences, most of the latter seem to belong to strictly or facultative anaerobe organisms. We also found signatures that together with other environmental 18S rRNA gene sequences represent environmental clades of possibly high taxonomic levels (class to kingdom level). One of these clades, consisting exclusively of sequences from anoxic sampling sites, branches at the base of the eukaryotic evolutionary tree among the earliest eukaryotic lineages. Assuming eukaryotic evolution under oxygen-depleted conditions, these sequences may represent immediate descendants of early eukaryotic ancestors.  相似文献   

9.
Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any prokaryotic genome. Based on a protein alignment we could group the P5 ATPases into two subfamilies, P5A and P5B that, based on the number of negative charges in conserved trans-membrane segment 4, are likely to have different ion specificities. P5A ATPases are present in all eukaryotic genomes sequenced so far, while P5B ATPases appear to be lost in three eukaryotic lineages; excavates, entamoebas and land plants. A lineage-specific gene expansion of up to four different P5B ATPases is seen in animals.  相似文献   

10.
The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.  相似文献   

11.
12.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

13.
Ribosomal RNA and the major lines of evolution: a perspective   总被引:1,自引:0,他引:1  
M A Ragan 《Bio Systems》1988,21(3-4):177-187
Does the "universal tree" based on small-subunit ribosomal RNA sequences show the phylogenetic relationship of all modern organisms? The answer is "yes" only if all these rRNAs are orthologous. Herein I argue that the major rRNA lineages (e.g. eubacterial, one or more archaebacterial and eukaryotic nucleocytoplasmic) probably arose from a divergent population of rRNAs in the progenote, antedating the universal common ancestral organism. Thus the major lineages of rRNA are probably not orthologous, but paralogous. The extrapolated date for the origin of the common ancestral small-subunit rRNA (3.6-4.7 x 10(9) years ago) is consistent with major rRNA lineages being paralogous. This perspective on the early evolution of genes and organisms rationalizes the presence of unexpected ribosomal characters in microsporidia, and bears on xenogenous and endogenous theories of the origin of the organelles in eukaryotes.  相似文献   

14.
Male and female, generally defined based on differences in gamete size and motility, likely have multiple independent origins, appearing to have evolved from isogamous organisms in various eukaryotic lineages. Recent studies of the gamete fusogen GCS1/HAP2 indicate that this protein is deeply conserved across eukaryotes, and its exclusive and/or functional expression generally resides in males or in male homologues. However, little is known regarding the conserved or primitive molecular traits of males and females within eukaryotes. Here, using morphologically indistinguishable isogametes of the colonial volvocine Gonium pectorale, we demonstrated that GCS1 is differently regulated between the sexes. G. pectorale GCS1 molecules in one sex (homologous to male) are transported from the gamete cytoplasm to the protruded fusion site, whereas those of the other sex (females) are quickly degraded within the cytoplasm upon gamete activation. This molecular trait difference might be conserved across various eukaryotic lineages and may represent male and female prototypes originating from a common eukaryotic ancestor.  相似文献   

15.
Models of population structure have emphasized the importance of sex in maintaining lineages. This is because, despite the well known ‘two‐fold cost of sex’ compared with asex, it is considered that recombination rids the genome of accumulated mutations and increases its potential for adaptive variation. However, asexual lineages of eukaryotic organisms can also rapidly gain genetic variance directly by various mutational processes, thereby proving that so‐called ‘clones’ do not have strict genetic fidelity ( Lushai & Loxdale, 2002 ; Loxdale & Lushai, 2003a ), whereas the variation so produced may well have adaptive advantage during the evolutionary process. This being so, obligated asexuals or cyclical parthenogens that occasionally indulge in sexual recombination (‘rare sex’) cannot be deemed as ‘evolutionary dead‐ends’( Lushai, Loxdale & Allen, 2003a ). In addition, the persistence of asexual lineages (i.e. lineage longevity) may also involve the integrity of the telomere region, the physical end of the chromosomes ( Loxdale & Lushai, 2003b ). In this earlier study on this topic, we argued that the persistence and ultimate senescence of eukaryotic cell lineages (based upon the frequency of ‘capped’ and ‘uncapped’ chromosomes related to telomere functionality; Blackburn, 2000 ) may directly relate to the survival and persistence of lineages of whole asexual organisms. Aphids are a good model system to test this hypothesis because they show a variety of sexual/asexual reproductive strategies, whereas their mode of asexual reproduction is of the mitotic (= apomictic) type. We also suggested that many aphid lineages require occasional or even rare sexual recombination to re‐set telomere length to allow lineages to persist. Ample empirical evidence from diverse taxa, lineages, and different developmental stages now reveals that the telomere states are indeed re‐set by recombination (homologous or meiotic), thereby rejuvenating the lineage in question. The generational clock element of telomeric functionality has also been successfully described in artificially‐induced mammalian clonal systems. It thus appears that telomere function is a central molecular mechanism instigating and promoting lineage continuity per se. By contrast, we hypothesized that other long‐lived asexuals, or the rare category of ancient asexuals such as bdelloid rotifers, have compensatory mechanisms for maintaining chromosome functional integrity, which are somewhat different from conventional telomeric repeats. In the present study, we carry the analogy between eukaryotic cell functionality and aphid lineages a stage further. Here, we hypothesize that the changing frequency of capped and uncapped telomeres, progressing to senescence in a stochastic manner, may be an underlying factor that significantly contributes to population dynamics in asexual lineage evolution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 719–728.  相似文献   

16.
17.
Abstract Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (α- and β-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1α, α-tubulin, and β-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of “Plantae” is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.  相似文献   

18.
Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.  相似文献   

19.
Large amounts of well preserved microfossils have been reported from the cherts of the Upper Proterozoic of the Bohemian Massif (Middle Europe). They resemble those described by Cayeux (1894) from the Upper Proterozoic (Brioverian) of Bretagne (France). It is shown, unlike the views of Cayeux and his followers (Deflandre, 1955, and Graindor 1957), that the observed structures did not belong to individuals but to colonies of filamentous prokaryotic organisms, most probably blue-green algae (Cyanophyta). These produced specific crystal-like mineral aggregation round each filament. Scanning microscope examination has revealed that the individual facets of these mineral crystals were perforated by the openings through which the thread-like bodies of these primitive organisms protruded. It is shown that these microorganisms were attached to the cells of other, bigger microorganisms and enveloped them. Some of these substrate organisms might have been eukaryotic algae. The thecae gradually accumulated around the cells of these carrier organisms and after death the colonies disintegrated to constitute the main component of the sediment. The microfossils described are just a major component of a complicated fossil assemblage comprising coccoid and filamentous blue-green algae and bacteria. There are indications that several eukaryotic species might also have been present.  相似文献   

20.
The availability of the complete genome sequences of Homo sapiens together with those of taxonomically diverse organisms provides an opportunity to carry out cross-species comparison. Comparisons of protein sequences from different organisms are significant source of information as these could help in answering questions regarding the fraction of proteins that are shared by humans and organisms representing the three domains of life, viz., archaea, bacteria, and eukaryota. In the present study, a comparative analysis of the proteins encoded by intronless genes in humans was undertaken. We identified 1125 human intronless proteins that are solely present in eukaryotic lineage. More than two-thirds of these eukaryotic specific proteins appear to be mammalia specific while a small fraction of proteins are conserved in bilateria and coelomata, indicating that diversification of these proteins occurred after the divergence of the major lineages of the eukaryotic crown group. A large fraction of mammalia specific proteins are enriched in proteins responsible for transport and binding, cell envelope, and housekeeping function particularly translation. Another 228 intronless proteins are observed that do not exhibit homology to any of the proteins in the database. The distribution of human intronless proteins suggests that lineage specific expansion is one of the most important sources of organizational diversity in crown-group eukaryotes. The presence of these eukaryotic as well as human specific intronless proteins provides the foundation for rapid analysis of some of the basic processes involved in human genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号