首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective harvesting of animals by humans can affect the sustainability and genetics of their wild populations. Bycatch - the accidental catch of non-target species - spans the spectrum of marine fauna and constitutes a harvesting pressure. Individual differences in attraction to fishing vessels and consequent susceptibility to bycatch exist, but few studies integrate this individual heterogeneity with demography. Here, we tested for the evidence and consequences of individual heterogeneity on the demography of the wandering albatross, a seabird heavily affected by fisheries bycatch. We found strong evidence for heterogeneity in survival with one group of individuals having a 5.2% lower annual survival probability than another group, and a decrease in the proportion of those individuals with the lowest survival in the population coinciding with a 7.5 fold increase in fishing effort in the foraging areas. Potential causes for the heterogeneity in survival are discussed and we suggest that bycatch removed a large proportion of individuals attracted by fishing vessels and had significant phenotypic and population consequences.  相似文献   

2.
In this paper, we study a mathematical bio-economic model of a fishery with varying price. The three dimensional model describes the time evolution of the resource, the fishing effort and the price. The model is original because it considers a nonlinear harvesting function assumed to depend upon stock size and fishing effort with a saturation effect with respect to the resource as well as a price equation depending on demand and supply which is in addition proportional to price. Assuming that the price varies at a fast time scale, we are able to use ”aggregation of variables methods” in order to reduce the model in a two dimensional model at a slow time scale. This aggregated (reduced) model is analyzed. Several numerical simulations of the model are performed to substantiate our analytical findings. The existence of nonlinear harvesting makes the dynamics of the model more complicated, including multiple equilibria, bi-stability and limit cycle. Such large amplitude cycle variations are not desirable because they generate periods of overfishing at periods of very low activity. We then study the effects of marine reserves on the dynamics of the fishery, showing that for an adequate number of small reserves, limit cycle oscillations are switched off.  相似文献   

3.
Balanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing. Four different exploitation patterns, generated by combining selective or unselective harvesting with balanced or unbalanced fishing, are compared. We find that unselective balanced fishing, where individuals are exploited in proportion to their productivity, produces a slightly larger total maximum sustainable yield than the other exploitation patterns and, for a given yield, the least change in the relative biomass composition of the fish community. Because fishing reduces competition, predation and cannibalism within the community, the total maximum sustainable yield is achieved at high exploitation rates. The yield from unselective balanced fishing is dominated by small individuals, whereas selective fishing produces a much higher proportion of large individuals in the yield. Although unselective balanced fishing is predicted to produce the highest total maximum sustainable yield and the lowest impact on trophic structure, it is effectively a fishery predominantly targeting small forage fish.  相似文献   

4.
Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems.  相似文献   

5.
This paper describes a prey–predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. The existence of possible steady states, along with their local stability, is discussed. A geometric approach is used to derive the sufficient conditions for global stability of the system at the positive equilibrium. Relative size of the reserve is considered as control in order to study optimal sustainable yield policy. Subsequently, the optimal system is derived and then solved numerically using an iterative method with Runge–Kutta fourth-order scheme. Numerical simulations are carried out to illustrate the importance of marine reserve in fisheries management. It is noted that the marine protected area enables us to protect and restore multi-species ecosystem. The results illustrate that dynamics of the system is extremely interesting if simultaneous effects of a regulatory mechanism like marine reserve is coupled with harvesting effort. It is observed that the migration of the resource, from protected area to unprotected area and vice versa, is playing an important role towards the standing stock assessment in both the areas which ultimately control the harvesting efficiency and enhance the fishing stock up to some extent.  相似文献   

6.
Marine reserves and optimal harvesting   总被引:6,自引:1,他引:6  
Advocates of no‐take marine reserves emphasize their conservation benefits. Critics counter that reserves would decrease fisheries yield. Analysis of a spatially explicit harvesting model, however, shows that no‐take marine reserves are always part of an optimal harvest designed to maximize yield. The optimal harvest generates a spatial source–sink structure with source populations placed in reserves. The sizes and locations of the optimal reserves depend on a dimensionless length parameter. For small values of this parameter, the maximum yield is obtained by placing a large reserve in the centre of the habitat. For large values of this parameter, the optimal harvesting strategy is a spatial ‘chattering control’ with infinite sequences of reserves alternating with areas of intense fishing. Such a chattering strategy would be impossible to actually implement, but in these cases an approximate yet practicable policy, utilizing a small number of reserves, can be constructed.  相似文献   

7.
Marine protected areas (MPAs) are increasingly being recognized as an alternative management tool for conserving marine resources and ecosystems. By integrating organism dispersal rates, ecosystem interactions and fishing effort dynamics, ECOSPACE, a spatially explicit ecosystem-based modeling tool, allowed us to compare the ecological consequences of alternative MPA zoning policies within the proposed Gwaii Haanas National Marine Conservation Area, located off the west coast of British Columbia, Canada. The desired effects of MPAs include higher fishery yields, the conservation of biodiversity, and/or the preservation of intact ecosystems. However, ECOSPACE predicts that when MPAs are small, species interactions and movements may make these objectives difficult to achieve. ECOSPACE suggests that the effects of MPAs are reduced at their boundaries where fishing effort is predicted to concentrate. Furthermore, top predators may become more abundant within MPAs, which could lead to a depression of their prey species and a subsequent increase of species at even lower trophic levels. Trophic cascade patterns and density gradients across boundaries are nontrivial departures from our simple expectations of how MPAs protect areas and will force us to reconsider what constitutes effective conservation. Our ECOSPACE model indicates that the establishment of multi-use buffer zones may help alleviate these realistic but worrisome ecological predictions. When coupled with an overall reduction in harvest pressure, ECOSPACE suggests that a MPA with a large core `no-take' zone and large buffer will result in the greatest increase in organism biomass. The use of marine zoning may be an effective management tactic to reduce social conflict and conserve marine ecosystems.  相似文献   

8.
Designing marine protected areas for migrating fish stocks   总被引:1,自引:0,他引:1  
This paper extends an earlier analysis and presents an investigation of how migration rates affect the performance of various types of management regimes with respect to economic yield and conservation benefits. Particular emphasis is placed on evaluating the geometric design of marine protected areas (MPAs). Earlier results have shown that MPAs are only likely to provide significant benefits when they are used in conjunction with direct catch or effort controls, unless they are quite large and cover most of the resource in question. Conversely, catch and effort controls are far more effective when protected areas are included in the management regime as a buffer against uncertainty. Dispersal of reproduction (recruitment) to other areas is an important expected benefit of protected areas, but such dispersal increases the variability of the effects of the area protection. If fishing mortality rates outside of the protected area are not controlled then dispersal can result in nullifying some of the benefits of the protected area. Similarly, adult migration increases the variability in the results when an area is protected and critically depends upon an overall control of fishing mortality outside the area. For both dispersal and migration separately or in combination, however, there are clear benefits to using MPAs in conjunction with catch or effort controls. These benefits are expressed in terms of long-term yield and recovery probabilities. In addition, short-term yield declines relatively slowly with increasing area protected. Design of the protected areas is seen to be important since using contiguous areas provide greater protection against overfishing than protected areas in isolation.  相似文献   

9.
We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.  相似文献   

10.

Small-scale reef fisheries are important commercial and subsistence activities that support the livelihoods of millions of people in tropical regions. Tropical marine fisheries typically target a diversity of species caught with a matching diversity of fishing gears and practices. Here, we explored how multiple fishing gears select for distinct functional traits of fish assemblages inside a large multiple use marine environmental protected area off northeastern Brazil. In 1833 landing interviews with local fishers, we identified 101 species, which were categorized according to six traits: body size, schooling behavior, mobility, position in the water column, diet and period of activity. Our research is the first to explore the broad patterns of gear selectivity with regards to fish functional traits for different habitat types. While gears used in reef habitats were highly selective of sedentary and benthic species that form schools with few individuals, gears used in coastal lagoons were selective of highly mobile pelagic species that form large schools. We found a low competitive interaction between different gear types, meaning there was a low overlap in trait selectivity between fishing gears. We also found direct associations between gears and fish functional traits: hooks and line targeted species that exhibit limited mobility capabilities, making these species more vulnerable to local levels of fishing effort. In contrast, nets and fish corrals targeted mobile species that exhibited a greater diversity of functional traits. Some of our results contrasted with the current literature on the topic, with differences highlighting the need for more research to clarify global patterns of trait selectivity by gear type. Our results have implications for fisheries management in northeastern Brazil: gear bans and effort caps are commonly used management measures that can foster fisheries sustainability by minimizing impacts to fish assemblage functions.

  相似文献   

11.
No-take zones may protect populations of targeted marine species and restore the integrity of marine ecosystems, but it is unclear whether they benefit top predators that rely on mobile pelagic fishes. In South Africa, foraging effort of breeding African penguins decreased by 30 per cent within three months of closing a 20 km zone to the competing purse-seine fisheries around their largest colony. After the fishing ban, most of the penguins from this island had shifted their feeding effort inside the closed area. Birds breeding at another colony situated 50 km away, whose fishing grounds remained open to fishing, increased their foraging effort during the same period. This demonstrates the immediate benefit of a relatively small no-take zone for a marine top predator relying on pelagic prey. Selecting such small protected areas may be an important first conservation step, minimizing stakeholder conflicts and easing compliance, while ensuring benefit for the ecosystems within these habitats.  相似文献   

12.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

13.
Community-based management and the establishment of marine reserves have been advocated worldwide as means to overcome overexploitation of fisheries. Yet, researchers and managers are divided regarding the effectiveness of these measures. The “tragedy of the commons” model is often accepted as a universal paradigm, which assumes that unless managed by the State or privatized, common-pool resources are inevitably overexploited due to conflicts between the self-interest of individuals and the goals of a group as a whole. Under this paradigm, the emergence and maintenance of effective community-based efforts that include cooperative risky decisions as the establishment of marine reserves could not occur. In this paper, we question these assumptions and show that outcomes of commons dilemmas can be complex and scale-dependent. We studied the evolution and effectiveness of a community-based management effort to establish, monitor, and enforce a marine reserve network in the Gulf of California, Mexico. Our findings build on social and ecological research before (1997–2001), during (2002) and after (2003–2004) the establishment of marine reserves, which included participant observation in >100 fishing trips and meetings, interviews, as well as fishery dependent and independent monitoring. We found that locally crafted and enforced harvesting rules led to a rapid increase in resource abundance. Nevertheless, news about this increase spread quickly at a regional scale, resulting in poaching from outsiders and a subsequent rapid cascading effect on fishing resources and locally-designed rule compliance. We show that cooperation for management of common-pool fisheries, in which marine reserves form a core component of the system, can emerge, evolve rapidly, and be effective at a local scale even in recently organized fisheries. Stakeholder participation in monitoring, where there is a rapid feedback of the systems response, can play a key role in reinforcing cooperation. However, without cross-scale linkages with higher levels of governance, increase of local fishery stocks may attract outsiders who, if not restricted, will overharvest and threaten local governance. Fishers and fishing communities require incentives to maintain their management efforts. Rewarding local effective management with formal cross-scale governance recognition and support can generate these incentives.  相似文献   

14.
The world faces a global fishing crisis. Wild marine fisheries comprise nearly 15% of all animal protein in the human diet, but, according to the U.N. Food and Agriculture Organization, nearly 60% of all commercially important marine fish stocks are overexploited, recovering, or depleted (FAO 2012 ; Fig.  1 ). Some authors have suggested that the large population sizes of harvested marine fish make even collapsed populations resistant to the loss of genetic variation by genetic drift (e.g. Beverton 1990 ). In contrast, others have argued that the loss of alleles because of overfishing may actually be more dramatic in large populations than in small ones (Ryman et al. 1995). In this issue, Pinsky & Palumbi (2014) report that overfished populations have approximately 2% lower heterozygosity and 12% lower allelic richness than populations that are not overfished. They also performed simulations which suggest that their estimates likely underestimate the actual loss of rare alleles by a factor of three or four. This important paper shows that the harvesting of marine fish can have genetic effects that threaten the long‐term sustainability of this valuable resource.  相似文献   

15.
Large predatory fishes have long played an important role in marine ecosystems and fisheries. Overexploitation, however, is gradually diminishing this role. Recent estimates indicate that exploitation has depleted large predatory fish communities worldwide by at least 90% over the past 50-100 years. We demonstrate that these declines are general, independent of methodology, and even higher for sensitive species such as sharks. We also attempt to predict the future prospects of large predatory fishes. (i) An analysis of maximum reproductive rates predicts the collapse and extinction of sensitive species under current levels of fishing mortality. Sensitive species occur in marine habitats worldwide and have to be considered in most management situations. (ii) We show that to ensure the survival of sensitive species in the northwest Atlantic fishing mortality has to be reduced by 40-80%. (iii) We show that rapid recovery of community biomass and diversity usually occurs when fishing mortality is reduced. However, recovery is more variable for single species, often because of the influence of species interactions. We conclude that management of multi-species fisheries needs to be tailored to the most sensitive, rather than the more robust species. This requires reductions in fishing effort, reduction in bycatch mortality and protection of key areas to initiate recovery of severely depleted communities.  相似文献   

16.
This work presents a specific stock-effort dynamical model. The stocks correspond to two populations of fish moving and growing between two fishery zones. They are harvested by two different fleets. The effort represents the number of fishing boats of the two fleets that operate in the two fishing zones. The bioeconomical model is a set of four ODE's governing the fishing efforts and the stocks in the two fishing areas. Furthermore, the migration of the fish between the two patches is assumed to be faster than the growth of the harvested stock. The displacement of the fleets is also faster than the variation in the number of fishing boats resulting from the investment of the fishing income. So, there are two time scales: a fast one corresponding to the migration between the two patches, and a slow time scale corresponding to growth. We use aggregation methods that allow us to reduce the dimension of the model and to obtain an aggregated model for the total fishing effort and fish stock of the two fishing zones. The mathematical analysis of the model is shown. Under some conditions, we obtain a stable equilibrium, which is a desired situation, as it leads to a sustainable harvesting equilibrium, keeping the stock at exploitable densities.  相似文献   

17.
European lobster populations in Norway and Sweden are severely reduced as a result of intense harvesting over a long time. Various alternative management options have been proposed or endorsed to both facilitate recovery and increase yield. Accordingly, Minimum Landing Size (MLS) regulations are widely used for the European lobster. We developed an individual-based population model which integrates biological knowledge about lobsters’ population dynamics to explore how available harvesting strategies and management options influence abundance and yield. The model reproduced basic features of a real lobster population in Sweden. Even for a relatively large MLS high fishing effort may still be detrimental to the long term production of the stock, while increasing the MLS further prevents this recruitment overfishing. A moratorium on berried females, in combination with the MLS appears to stabilize population fluctuations and yield, leading to higher yield for all MLS's considered. The female moratorium harvesting strategy also performed better than a maximum size limit. Yield per recruit calculations gave similar quantitative results, and also shows that a larger MLS reduce the risk of growth overfishing. A smaller MLS enables the harvest of many individuals but is very sensitive to increase in effort which easily promotes overfishing.  相似文献   

18.
Large pelagic predators occupy high positions in food webs and could control lower trophic level species by direct and indirect ecological interactions. In this study we aimed to test the hypotheses: (1) pelagic predators are keystone species, and their removals could trigger impacts on the food chain; (2) higher landings of pelagic predators could trigger fishing impacts with time leading to a drop in the mean trophic level of catches; and (3) recovery in the pelagic predators populations, especially for sharks, could be achieved with fishing effort reduction. We performed a food web approach using an Ecopath with Ecosim model to represent the Southeastern and Southern Brazil, a subtropical marine ecosystem, in 2001. We then calibrated the baseline model using catch and fishing effort time series from 2001 to 2012. Afterwards, we simulated the impact of fishing effort changes on species and assessed the ecological impacts on the pelagic community from 2012 to 2025. Results showed that the model was well fitted to landing data for the majority of groups. The pelagic predators species were classified as keystone species impacting mainly on pelagic community. The ecosystem was resilient and fisheries seem sustainable at that time. However, the temporal simulation, from 2001 to 2012, revealed declines in the biomass of three sharks, tuna and billfish groups. It was possible observe declines in the mean trophic level of the catch and in the mean total length of landings. Longline fisheries particularly affected the sharks, billfish and swordfish, while hammerhead sharks were mostly impacted by gillnet fishery. Model simulations showed that large sharks’ biomasses could be recovered or maintained only after strong fishing effort reduction.  相似文献   

19.
Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters.  相似文献   

20.
To help manage the fluctuations inherent in fish populations scientists have argued for both an ecosystem approach to management and the greater use of marine reserves. Support for reserves includes empirical evidence that they can raise the spawning biomass and mean size of exploited populations, increase the abundance of species and, relative to reference sites, raise population density, biomass, fish size and diversity. By contrast, fishers often oppose the establishment and expansion of marine reserves and claim that reserves provide few, if any, economic payoffs. Using a stochastic optimal control model with two forms of ecological uncertainty we demonstrate that reserves create a resilience effect that allows for the population to recover faster, and can also raise the harvest immediately following a negative shock. The tradeoff of a larger reserve is a reduced harvest in the absence of a negative shock such that a reserve will never encompass the entire population if the goal is to maximize the economic returns from harvesting, and fishing is profitable. Under a wide range of parameter values with ecological uncertainty, and in the ‘worst case’ scenario for a reserve, we show that a marine reserve can increase the economic payoff to fishers even when the harvested population is not initially overexploited, harvesting is economically optimal and the population is persistent. Moreover, we show that the benefits of a reserve cannot be achieved by existing effort or output controls. Our results demonstrate that, in many cases, there is no tradeoff between the economic payoff of fishers and ecological benefits when a reserve is established at equal to, or less than, its optimum size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号