首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carbon monoxide (CO) in expired gas has been shown to be elevated with asthma; however, its function is not known, and there is some potential that it may serve a bronchoprotective role to decrease airway hyperresponsiveness (AHR). Thus the ability of CO to reverse methacholine (MCh)-induced bronchoconstriction was evaluated in C57BL/6 (C57) and A/J mice with and without airway inflammation produced by ovalbumin (OVA). Acutely administered CO (1% in air, 10 min) reduced MCh-driven increases in lung resistance in OVA-challenged C57 mice by an average of 50% (from 14.5 to 7.1 cmH2O.ml-1.s-1), whereas no effect was observed in na?ve C57 mice or OVA-challenged C57 mice inhaling air alone. Acutely inhaled CO (500 ppm = 0.05%, for 10 min) reduced MCh-induced airway reactivity (AR) by 20-60% in airway hyperresponsive na?ve A/J mice, whereas repeated 10-min administrations of 500 ppm CO over a 5-day period decreased AR by 50%. Repeated administration of low-dose CO [250 (0.025%) and (0.05%) 500 ppm, 1 h/day, 5 days] to A/J mice with airway inflammation likewise resulted in a drop of AR by 50%, compared with those not receiving CO. Inhibition of guanylyl cyclase/guanosine 3',5'-cyclic monophosphothioate (cGMP) using 1H-[1,2,4] oxydiazolo[4,3-a]quinoxalin-1-one or a competitive inhibitor, Rp diastereomers of 8-bromo-cGMP, resulted in inhibition of the effect of CO on AHR, suggesting that the effects of CO were mediated through this mechanism. These results indicate that low-dose CO can effectively reverse AHR in the presence and absence of airway inflammation in mice and suggest a potential role for CO in the modulation of AHR.  相似文献   

3.
1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide-protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide-haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5x10(8)m(-1)sec.(-1) and 10(3)sec.(-1) at pH9.1 and 20 degrees . The complex is converted into carbon monoxide-haemoprotein in a first-order process with a rate constant of 235sec.(-1) for peroxidase and 364sec.(-1) for myoglobin at pH9.1 and 20 degrees . 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide-haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.  相似文献   

4.
5.
6.
Pregnant CF-1 mice and New Zealand rabbits were exposed to carbon monoxide at a concentration of 250 ppm for 7 or 24 hours daily during the period of major organogenesis, days 6 through 15 of gestation in mice and 6 through 18 of gestation in rabbits. Carboxyhemoglobin levels in the range of 10--15% were observed in both species (control animals had 0.7% or less). Carbon monoxide was not found to be teratogenic in either species. In mice, a significant increase in the incidence of some minor skeletal variants was observed. One litter in each of the carbon monoxide-exposed groups of mice was completely resorbed; none of the litters of control mice or of control or exposed rabbits were completely resorbed. The fetuses of mice exposed to carbon monoxide for seven hours daily were heavier than control fetuses, and those exposed for 24 hours daily were lighter than control fetuses. The reason for this result is not known.  相似文献   

7.
8.
Carbon monoxide (CO) exposure at high concentrations results in overt neurotoxicity. Exposure to low CO concentrations occurs commonly yet is usually sub-clinical. Infants are uniquely vulnerable to a variety of toxins, however, the effects of postnatal sub-clinical CO exposure on the developing brain are unknown. Apoptosis occurs normally within the brain during development and is critical for synaptogenesis. Here we demonstrate that brief, postnatal sub-clinical CO exposure inhibits developmental neuroapoptosis resulting in impaired learning, memory, and social behavior. Three hour exposure to 5 ppm or 100 ppm CO impaired cytochrome c release, caspase-3 activation, and apoptosis in neocortex and hippocampus of 10 day old CD-1 mice. CO increased NeuN protein, neuronal numbers, and resulted in megalencephaly. CO-exposed mice demonstrated impaired memory and learning and reduced socialization following exposure. Thus, CO-mediated inhibition of neuroapoptosis might represent an important etiology of acquired neurocognitive impairment and behavioral disorders in children.  相似文献   

9.
10.
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h = (1.2 ± 0.2) × 10−2 s−1 and koff(CO) = (1.4 ± 0.2) × 10−2 s−1, respectively, at pH 7.2 and 20.0 °C. The coincidence of values of h and koff(CO) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO.  相似文献   

11.
12.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2-3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.  相似文献   

13.
14.
Chronic hypoxia (CH) is associated with both blunted agonist-induced and myogenic vascular reactivity, possibly due to an enhanced production of heme oxygenase (HO)-derived carbon monoxide (CO). However, the cellular location of the HO responsible for these effects has not been clearly established. Therefore, we examined the response to administration of the substrate for HO, heme-l-lysinate (HLL), in endothelium-intact and endothelium-denuded small mesenteric arteries from CH male Sprague-Dawley rats. Mesenteric arteries were isolated and mounted on glass cannulas, pressurized to 60 mmHg, and superfused with physiological saline solution. All experiments were performed in the presence of 100 microM N(omega)-nitro-l-arginine. The vasodilator response to HLL or exogenous CO was examined. HLL experiments were performed in the presence and absence of the HO inhibitor zinc protoporphyrin IX (ZnPPIX). HLL administration resulted in a dose-dependent vasodilator response that was abolished in the presence of ZnPPIX or by endothelial removal. Exogenous CO produced a vasodilator response that was independent of an intact endothelium. Cellular localization of HO was verified through immunohistochemistry in sections of the gut and aorta from CH and control animals. Staining for HO-1, HO-2, and endothelial nitric oxide synthase was confined to the endothelium. Thus we conclude that CO is a product of HO located within the endothelium.  相似文献   

15.
16.
17.
A physiological role of carbon monoxide has been suggested for coronary myocytes; however, direct evidence is lacking. The objective of this study was to test the effect of chronic carbon monoxide exposure on the K(+) currents of the coronary myocytes. The effect of 3-wk chronic exposure to carbon monoxide was assessed on K(+) currents in isolated rat left coronary myocytes by the use of the patch-clamp technique in the whole cell configuration. Moreover, membrane potential studies were performed on coronary artery rings using intracellular microelectrodes, and coronary blood flow in isolated heart preparation was recorded. Carbon monoxide did not change the amplitude of global whole cell K(+) current, but it did increase the component sensitive to 1 mM 4-aminopyridine. Carbon monoxide exposure hyperpolarized coronary artery segments by approximately 10 mV and, therefore, increased their sensitivity to 4-aminopyridine. This effect was associated with an enhancement of coronary blood flow. We conclude that chronic carbon monoxide increases a 4-aminopyridine-sensitive current in isolated coronary myocytes. This mechanism could, in part, contribute to hyperpolarization and to increased coronary blood flow observed with carbon monoxide.  相似文献   

18.
Carbon monoxide (CO) has been postulated to be a signaling molecule in many tissues, including the vasculature. We examined vasomotor responses of adult rat and mouse cerebral arteries to both exogenously applied and endogenously produced CO. The diameter of isolated, pressurized, and perfused rat middle cerebral arteries (MCAs) was not altered by authentic CO (10(-6) to 10(-4) M). Mouse MCAs, however, dilated by 21 +/- 10% at 10(-4) M CO. Authentic nitric oxide (NO., 10(-10) to 10(-7) M) dilated both rat and mouse MCAs. At 10(-8) M NO., rat vessels dilated by 84 +/- 4%, and at 10(-7) M NO., mouse vessels dilated by 59 +/- 9%. Stimulation of endogenous CO production through heme oxygenase (HO) with the heme precursor delta-aminolevulinic acid (10(-10) to 10(-4) M) did not dilate the MCAs of either species. The metalloporphyrin HO inhibitor chromium mesoporphyrin IX (CrMP) caused profound constriction of the rat MCA (44 +/- 2% at 3 x 10(-5) M). Importantly, this constriction was unaltered by exogenous CO (10(-4) M) or CO plus 10(-5) M biliverdine (both HO products). In contrast, exogenous CO (10(-4) M) reversed CrMP-induced constriction in rat gracilis arterioles. Control mouse MCAs constricted by only 3 +/- 1% in response to 10(-5) M CrMP. Magnesium protoporphyrin IX (10(-5) M), a weak HO inhibitor used to control for nonspecific effects of metalloporphyrins, also constricted the rat MCA to a similar extent as CrMP. We conclude that, at physiological concentrations, CO is not a dilator of adult rodent cerebral arteries and that metalloporphyrin HO inhibitors have nonspecific constrictor effects in rat cerebral arteries.  相似文献   

19.
20.
Q-Band ENDOR studies on carbon monoxide dehydrogenase (CODH) from the acetogenic bacterium Clostridium thermoaceticum provided unambiguous evidence that the reaction of CO with CODH produces a novel metal center that includes at least one nickel, at least three iron sites, and the carbon of one CO. The 57Fe hyperfine couplings determined by ENDOR are similar to the values used in simulation of the M?ssbauer spectra [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888]. EPR simulation using these AFe values is equally good for a 4Fe or a 3Fe center. The 13C ENDOR data are consistent with the binding of a carbon atom to either the Ni or the Fe component of the spin-coupled cluster. The 13C hyperfine couplings are similar to those determined earlier for the C0-bound form of the H cluster of the Clostridium pasteurianum hydrogenase, proposed to be the active site of hydrogen activation [Telser et al. (1987) J. Biol. Chem. 262, 6589-5694]. The 61 Ni ENDOR data are the first nickel ENDOR recorded for an enzyme. The EPR simulation using the ENDOR-derived hyperfine values for 61Ni is consistent with a single nickel site in the Ni-Fe-C complex. On the basis of our results and the M?ssbauer data [Lindahl et al. (1989) J. Biol. Chem. 265, 3880-3888], we propose the stoichiometry of the components of the Ni-Fe-C complex to be Ni1Fe3-4S greater than or equal to 4C1, with four acid-labile sulfides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号