首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the female mouse, ovulation and estrous cyclicity are under both hormonal and circadian control. We have shown that mice with a mutation in the core circadian gene Clock have abnormal estrous cycles and do not have a luteinizing hormone (LH) surge on the afternoon of proestrus due to a defect at the hypothalamic level. In the present study, we tested the hypotheses that vasopressin (AVP) can act as a circadian signal to regulate the proestrous release of LH, and that this signal is deficient in the Clock mutant. We found that Avp expression in the suprachiasmatic nucleus (SCN) and AVP 1a receptor (Avpr1a) expression in the hypothalamus is reduced in Clock mutant mice compared to wild-type mice. Intracerebroventricular (i.c.v.) injection of AVP on the afternoon of proestrus is sufficient to induce LH secretion, which reaches surge levels in 50% of Clock mutant mice. The effect of AVP on the Clock mutant LH surge is mediated by AVPR1A, as co-infusion of AVP and an AVPR1A-specific antagonist prevents AVP induction of LH release, although infusion of an AVPR1A antagonist into wild-type mice failed to prevent a proestrous LH surge. These results suggest that reduced hypothalamic AVP signaling plays a role in the absence of the proestrous LH surge in Clock mutant mice. The results also support the hypothesis that AVP produced by the SCN may be a circadian signal that regulates LH release.  相似文献   

2.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary.  相似文献   

3.
The preovulatory surge of gonadotropin releasing hormone (GnRH) is essential for mammalian reproduction. Recent work has implicated the neurotransmitters glutamate and nitric oxide as having a key role in this process. Large concentrations of glutamate are found in several hypothalamic nuclei known to be important for GnRH release and glutamate receptors are also located in these key hypothalamic nuclei. Administration of glutamate agonists stimulate GnRH and LH release, while glutamate receptor antagonists attenuate the steroid-induced and preovulatory LH surge. Glutamate has also been implicated in the critical processes of puberty, hormone pulsatility, and sexual behavior. Glutamate is believed to elicit many of these effects by activating the release of the gaseous neurotransmitter, nitric oxide (NO). NO potently stimulates GnRH by activating a heme containing enzyme, guanylate cyclase, which in turn leads to increased production of cGMP and GnRH release. Recent work has focused on identifying anchoring and (or) clustering proteins that target glutamate receptors to the synapse and couple the glutamate-NO neurotransmission system. The present review will discuss these new findings, as well as the role of glutamate and nitric oxide in important mammalian reproductive events, with a focus on the hypothalamic control of preovulatory GnRH release.  相似文献   

4.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors’ previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary. (Author correspondence: stischkau@siumed.edu)  相似文献   

5.
Overexpression of growth hormone (GH) as well as GH-deficiency dramatically impairs reproductive function. Decreased reproductive function as a result of altered GH release is, at least partially, due to changes at the hypothalamic-pituitary level. We hypothesize that hypothalamic somatostatin (SOM), the inhibiting factor of GH release from the pituitary, may play a central role in the "crosstalk" between the somatotropic and gonadotropic axes. In the present study we investigated the possible effects of a centrally applied SOM analog on the LH surge and the concurrent activation of hypothalamic GnRH neurons in female rats. To this end, female rats were treated with estradiol 2 wk after ovariectomy and were given a single central injection with either the SOM analog, octreotide, or saline just prior to surge onset, after which hourly blood samples were taken to measure LH. Two weeks later, the experimental setup was randomly repeated to collect brains during the anticipated ascending phase of the LH surge. Vibratome sections were subsequently double-stained for GnRH and cFos peptide. Following octreotide treatment, LH surges were significantly attenuated compared to those in saline-treated control females. Also, octreotide treatment significantly decreased the activation of hypothalamic GnRH neurons. These results clearly demonstrate that SOM is able to inhibit LH release, at least in part by decreasing the activation of GnRH neurons. Based on these results, we hypothesize that hypothalamic SOM may be critically involved in the physiological regulation of the proestrus LH surge.  相似文献   

6.
A hallmark of reproductive aging in rats is a delay in the initiation and peak, and a decrease in the amplitude, of both proestrous and steroid-induced surges of LH and a decrease in the number of GnRH neurons that express Fos during the surge. The altered timing of the LH surge and the decline in Fos expression in GnRH neurons may be due to changes in the rhythmic expression of vasoactive intestinal polypeptide (VIP), a neuropeptide that carries time-of-day information from the circadian pacemaker, located in the suprachiasmatic nuclei (SCN), to GnRH neurons. The goals of our study were to determine if aging alters 1) the innervation of GnRH neurons by VIP and 2) the ability of VIP to activate GnRH neurons by examining the effects of aging on the number of GnRH neurons apposed by VIP fibers and the number of GnRH neurons that receive VIP input that express Fos. Immunocytochemistry for GnRH and VIP; or GnRH, VIP, and Fos was performed on tissue sections collected from young (2-4 mo), regularly cycling females and middle-aged (10-12 mo) females in constant estrus. The number of GnRH neurons, GnRH neurons apposed by VIP fibers, and GnRH neurons that express Fos and apposed by VIP fibers were counted in both age groups. Our results clearly demonstrate that aging does not alter the number of GnRH neurons that receive VIP innervation. However, the number of GnRH neurons that receive VIP innervation and coexpress Fos decreases significantly. We conclude that the age-related delay in the timing of the LH surge is not due to a change in VIP innervation of GnRH neurons, but instead may result from a decreased sensitivity of GnRH neurons to VIP input.  相似文献   

7.
In normally cycling female baboons, an LH surge appeared prior to ovulation, in addition, another LH surge (postovulatory LH surge) was observed within two days after ovulation. An attempt was then made to determine the effect of postovulatory LH on the luteinization of corpus luteum in baboons. Injections of 300 micrograms estradiol benzoate were given at 09.00 and 16.00 hr daily for 5 days following ovulation; the plasma level of LH was increased, but plasma progestin was suppressed. These results infer that the injected estrogen (estradiol benzoate) may inhibit the luteotrophic effect of postovulatory LH on the corpus luteum, therefore, plasma progestin remains lower even though postovulatory LH is elevated.  相似文献   

8.
G D?rner  F G?tz  W Rohde 《Endokrinologie》1975,66(3):369-372
Following a single injection of oestradiol benzoate (15 mug/100 g body weight) postpubertally castrated and oestrogen-primed female rats showed a distinct surge of LH secretion, while castrated and androgen-primed females displayed a diminished and delayed surge of LH secretion. On the other hand, postpubertally castrated and oestrogen-primed male rats exhibited only a slight, but significant surge of LH secretion, whereas castrated and androgen-primed males did not display any surge of LH secretion following oestrogen injection. In view of these findings the evocability of a positive oestrogen feedback action on LH secretion is dependent on the sex hormone level during the critical hypothalamic differentiation phase and the functional (priming) phase as well.  相似文献   

9.
The regulation of luteinizing hormone (LH) activity is vital to normal reproductive functioning of the female. Although gonadotrophin-releasing hormone (GnRH) has a prominent role in the regulation of LH it is now believed that other peptides are also involved. Among these peptides is oxytocin. The addition of oxytocin to cultures of pituitary cells from female rats elicited a concentration-dependent secretion of LH. This secretion was enhanced in an oestrogenised environment and was inhibited by progesterone and testosterone. Oxytocin administered to female rats at pro-oestrus advanced the endogenous LH surge that occurs on the evening of pro-oestrus. Conversely oxytocin receptor antagonist suppressed the production of the LH surge in a dose-dependent manner, indicating that endogenous oxytocin is a crucial component of LH regulation. In the human female, oxytocin administered during the late follicular phase advanced the onset of the midcycle LH surge. Oxytocin added to rat pituitary cells in vitro induced LH synthesis. Furthermore rats administered oxytocin on pro-oestrus had higher LH pituitary content following development of the LH surge than did rats administered saline. Thus oxytocin promoted synthesis and replacement in the pituitary of LH released into the circulation. Incubation of pituitary pieces with oxytocin plus GnRH induced secretion of amounts of LH greater than the sum of the amounts released by oxytocin and GnRH separately. Additionally the increased LH levels observed in the peripheral circulation of pentobarbitone-anaesthetised rats administered GnRH were enhanced if the rats received oxytocin prior to the GnRH. Thus oxytocin synergised with GnRH in stimulating LH release. Addition of diBucAMP reduced the oxytocin-mediated augmentation and dideoxyadenosine enhanced the augmentation, suggesting that oxytocin worked most efficiently in a milieu low in cAMP activity. The use of a cell immunoblot assay revealed that individual cells responded differently to oxytocin and to GnRH and that the two peptides could act on the same cell. Perifusion studies performed on hemipituitaries demonstrated that a LH response could be determined by the presence of three peptides, oxytocin, neuropeptide Y and GnRH. Hence oxytocin is potentially involved also in multiple interactions during the process of LH regulation. LH regulation is therefore apparently the result of a community of peptides acting in a co-operative network.  相似文献   

10.
In aging, persistently estrous (PE) female rats, there are no estrous cycles or cyclic increases in luteinizing hormone (LH) secretion, but the sexual receptivity to the male is consistently maintained. We recently reported that caging and mating with fertile males elicits an LH surge followed by ovulation in aging PE rats. The present study examined the relationship between the LH surge, the increase in progesterone (P) secretion and ovulation in PE females exposed to males, and assessed whether intromission was essential for the male-induced pre-ovulatory LH surge. PE rats were implanted with intra-atrial cannulae. Six to eight days later, these females were individually caged with a fertile male and repeatedly sampled (once every 30 or 60 min) between 1400 and 1900 h for assays of plasma LH and P. Sexual behavior of the female was recorded and correlated with the changes in plasma LH and P values. Similar experiments were also performed on cannulated PE rats with their vaginal orifice blocked with adhesive tape during the caging and sampling session. In both experiments, over 90% of the PE females displayed a high degree of lordosis response to mounting by the male, and over 60% of those sexually receptive PE females exhibited an LH surge followed by ovulation. The male-induced preovulatory LH surge occurred in PE females without actual intromission. Caging with fertile males also elicited a marked increase in plasma P concentrations in PE rats and in PE females prevented from experiencing intromission.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
J T Pan  R R Gala 《Life sciences》1988,43(23):1929-1934
It has been shown that lesions of the medial preoptic/suprachiasmatic nuclei (MPO/SCN) abolish the estrogen-induced afternoon prolactin (PRL) surge. Recent studies using both dopamine antagonist and thyrotropin-releasing hormone (TRH) successfully induced an increase in plasma PRL in various animal models. The same drug approach was used in this study in the MPO/SCN lesioned rat to determine whether these areas participated in the induced PRL release. It is concluded that a significant PRL release can be induced by DA antagonism, or TRH stimulation preceded by DA antagonism in the MPO/SCN lesioned, estrogen-treated ovariectomized rat.  相似文献   

12.
Stress reduces fertility in ruminants. Various experimental models, such as insulin-induced hypoglycaemia, have been used to investigate the mechanisms involved, and have revealed abnormal LH profiles (both pulse and surge secretion). This disruption affects follicular function and it is proposed there may be negative consequences on subsequent oocyte morphology. Insulin (5 iu/kg), administered to ewes in the late follicular phase, induced hypoglycemia for 10 h, decreased estradiol concentrations for 8-12 h and delayed the LH surge by 15 h. Although the diameters of dominant follicles just before ovulation were not affected, granulosa cells had fewer pycnotic nuclei, less apoptosis and increased proliferation 16-17 h after the LH surge. Nevertheless, we did not observe gross ultra-structural differences in nuclear, cytoplasmic or cumulus maturity between oocytes from insulin-treated and control animals. This suggests that reduced LH pulsatility and a delay in the LH surge may only produce very subtle changes in gross oocyte morphology, imperceptible by electron microscopy.  相似文献   

13.
Circadian and seasonal control of neuroendocrine-gonadal activity   总被引:1,自引:0,他引:1  
A circadian clock(s) located in the suprachiasmatic nucleus (SCN) of the hypothalamus plays an important role in regulating the timing of pituitary gonadotropin release in many mammalian species. The results from studies involving two unusual experimental paradigms are presented to demonstrate a role for this circadian clock in the regulation of the timing of the preovulatory LH surge in the golden hamster as well as in the measurement of the seasonal change in day length in the Djungarian hamster; information which is used in the regulation of neuroendocrine-gonadal activity on a seasonal basis. The data also demonstrate that the circadian rhythm of locomotor activity can be used as a "marker" rhythm for the clock involved in both ovulatory and seasonal cycles in hamsters.  相似文献   

14.
The effects of third ventricular injection of beta-endorphin (beta-EP) on spontaneous, brain stimulation-induced and estrogen-induced LH surges were studied in the adult female rat. It was found that beta-EP blocked the preovulatory surge of LH release and ovulation, while it did not affect LH release in response to LH-RH injection. The site of the beta-EP blockade of ovulation was proved to be in the brain. Beta-EP completely blocked ovulatory LH release induced by the electrochemical stimulation of the medial amygdaloid nucleus and medial septum-diagonal band of Broca, but failed to block ovulation due to the stimulation of the medial preoptic area (MPO) or median eminence, though serum LH levels after the MPO stimulation were inhibited by beta-EP. In the spayed rats treated with estradiol benzoate (EB) on Day 1 and 4 of experiment, beta-EP given on Day 5 blocked the LH surge that normally occurred on that day and led to a compensatory surge of LH on the following day. Moreover, the LH surge on Day 5 was inhibited by beta-EP given either on Day 1 or Day 4. Present data suggest that beta-EP may act in inhibiting the preovulatory LH surges not only by suppressing the preoptic-tuberal LH-RH activities but also by affecting the initiation and development of stimulatory feedback of estrogen in the central nervous system.  相似文献   

15.
The present study aimed to identify the hypothalamic nuclei involved with food entrainment by using c-Fos-like immunoreactivity (c-Fos-IR) as a marker of functional activation. We studied rats entrained 3 wk to restricted feeding schedules (RF), their ad libitum (AL) controls, and the persistence of c-Fos-IR temporal patterns in entrained-fasted rats. In addition, we included 22-h fasting and 22-h fasting-refeeding groups as controls of fasting and refeeding acute effects. Diurnal patterns of c-Fos-IR were observed in the tuberomammilar nucleus (TM) and suprachiasmatic nucleus (SCN) in AL rats. In all nuclei, except the SCN and ventromedial nucleus (VMH), restricted feeding schedules imposed a temporal pattern of increased c-Fos-IR around mealtime. An increase in c-Fos-IR before and after meal time was observed in dorsomedial nucleus (DMH), lateral nucleus (LH), perifornical area (PeF), and TM, and a marked increase was observed in the paraventricular nucleus (PVN) after feeding. Food-entrained c-Fos-IR patterns persisted after 3 days in fasting in DMH, LH, and PeF. Present data suggest that FEO might not rely on a single nucleus and rather may be a distributed system constituted of interacting nuclei in which the PVN is mainly involved with the response to signals elicited by food ingestion and, therefore, with the entraining pathway. We can suggest that the PeF and TM may be involved with the arousal state during food anticipation and the DMH and LH with the time-keeping mechanism of FEO or its output.  相似文献   

16.
High doses of atrazine (ATR), administered for 4 days, suppress luteinizing hormone (LH) release and increase adrenal hormones levels. Considering the known inhibitory effects of adrenal hormones on the hypothalamo-pituitary-gonadal axis, we investigated the possible role the adrenal gland has in mediating ATR inhibition of LH release. To determine the extant and duration of adrenal activation, ovariectomized Wistar rats were given a single dose of ATR (0, 50, or 200 mg/kg), and corticosterone (CORT) levels were assayed at multiple time points posttreatment. CORT levels were increased within 20 min and remained elevated over 12 h postgavage in 200-mg/kg animals. To determine the effects of adrenalectomy on ATR inhibition of the LH surge and pulsatile LH release, adrenalectomized (ADX) or sham-operated ovariectomized rats were treated for 4 days with ATR (0, 10, 100, or 200 mg/kg), and an LH surge was induced with hormone priming. In the afternoon following the last dose of ATR, blood was sampled hourly for 9 h. Another cohort of ovariectomized rats was examined for pulsatile patterns of LH secretion after ATR (0, 50, or 200 mg/kg) and sampled every 5 min for 3 h. ADX had no effect on ATR inhibition of the LH surge but prevented the ATR disruption of pulsatile LH release. These data indicate that ATR selectively affects the LH pulse generator through alterations in adrenal hormone secretion. Adrenal activation does not play a role in ATR's suppression of the LH surge, and therefore ATR may work centrally to alter the preovulatory LH surge in female rats.  相似文献   

17.
LH surges occur 3 h later in intact anovulatory hamsters exposed to nonstimulatory photoperiods (6L:18D) for 8 wk than the proestrous LH surges from the same hamsters housed in 6L:18D for 3 weeks. In ovariectomized hamsters housed in 6L:18D for 3 wk, the LH surge was observed at the same time of day as in intact anovulatory hamsters at 8 wk. Implanting Silastic capsules containing estradiol benzoate (EB) advanced the timing of the daily surge of LH in ovariectomized hamsters housed in 6L:18D for 8 wk. EB also affected the magnitude of the LH surge in hamsters housed in 6L:18D for 8 wk. Two days after receiving EB implants, daily LH surges in anovulatory hamsters were suppressed by 75% and in ovariectomized "regressed" hamsters by 37%. This difference between groups was probably due to ovarian progesterone in intact animals. Estrogen is not required for LH surges in anovulatory hamsters but suppresses LH release when administered exogenously. The delay in the timing of the LH surge in anovulatory hamsters may result from the decline in estrogen resulting from short photoperiod exposure.  相似文献   

18.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
D W Brann  V B Mahesh 《FASEB journal》1991,5(12):2691-2698
Corticosteroids, ACTH, and stress can exert inhibitory and facilitory effects on reproduction. The purpose of this review is to reconcile the divergent effects of corticosteroids on gonadotropin secretion based on recent work in the area. Whether stimulation or inhibition of gonadotropin secretion is observed appears to depend on two important variables: 1) length of exposure, and 2) background of estrogen priming. The acute administration of ACTH and certain corticosteroids to estrogen-primed animals brings about the release of LH and FSH. Corticosteroids have also been shown by some investigators to cause selective release of follicle-stimulating hormone (FSH) both in vitro and in vivo. This selective facilitation of FSH release by corticosteroids may explain many deleterious effects on reproduction observed after adrenalectomy, and it may have relevance in explaining the beneficial effects of corticosteroids in inducing ovulation in anovulatory patients suffering from polycystic ovarian syndrome. Finally, evidence is presented which suggests that adrenal steroids may participate in initiation and synchronization of the preovulatory LH and FSH surge, as well as the secondary FSH surge seen on estrus in the rat.  相似文献   

20.
Daily urine samples were collected from 4 adult female gorillas over 7 menstrual cycles. Urinary oestrone conjugate and pregnanediol-3-glucuronide (PDG) were measured by radioimmunoassay; LH was measured by enzyme immunoassay and each hormone was indexed by creatinine. The quantity of urinary LH during the ovulatory surge was positively correlated with the quantity of PDG excreted during the luteal phase (r = 0.87, P = 0.0013). The observations indicate a relationship between the quality of the LH surge and the levels of PDG in the luteal phase and suggest that both the LH surge and subsequent luteal phase function may be predictable from the oestrogen excretion profile during the follicular phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号