首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity.  相似文献   

2.
Abstract: Cellular edema and increased lactate production were induced in rat brain cortical slices by xanthine oxidase and xanthine, in the presence of ferric ions. Lipid peroxidation, as measured by thiobarbituric acid-reactive malon-dialdehyde, was increased 174%. Among the various subcellular fractions of brain cortex, xanthine oxidase-stimulated lipid peroxidation was highest in myelin, mitochondria, and synaptosomes, followed by microsomes and nuclei. Antioxidants, catalase, chlorpromazine, and butylated hydroxytoluene inhibited lipid peroxidation in both homogenates and synaptosomes, indicating H2O2 and radicals were involved. Further, several free fatty acids, especially oleic acid (18:1), arachidonic acid (20:4), and docosahexaenoic acid (22:6) were released from the phospholipid pool concomitant with the degradation of membrane phospholipids in xanthine oxidase-treated synaptosomes. These data suggest that Upases are activated by free radicals and lipid peroxides in the pathogenesis of cellular swelling.  相似文献   

3.
The effects of short- and long-chain fatty acids on the cerebromicrovascular (Na+ + K+)-ATPase were investigated using specific [3H]ouabain binding to the enzyme. Specific binding increased linearly with total microvessel protein (37-110 micrograms) and was time-dependent with maximum binding obtained by 10 min. Arachidonic acid, but not palmitic acid, stimulated [3H]ouabain binding in a dose-dependent manner, with a 105% increase over basal levels at 100 microM arachidonic acid. Preincubation of the microvessels with arachidonic acid did not alter the stimulation observed. 4-Pentenoic acid stimulated [3H]ouabain binding only at high concentrations (10 mM). Scatchard analysis of [3H]ouabain binding to untreated microvessels yielded a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 64.7 +/- 2.0 nM and a binding capacity (Bmax) of 10.1 +/- 1.5 pmol/mg protein. In the presence of 100 microM arachidonic acid, a monophasic Scatchard plot also was obtained, but the KD significantly decreased to 51.9 +/- 2.7 nM (p less than 0.01), whereas the Bmax remained virtually unchanged (12.5 +/- 1.2 pmol/mg protein). The stimulation of [3H]ouabain binding in the presence of arachidonic acid was potentiated by 4-pentenoic acid, but not by indomethacin or eicosatetraynoic acid. These data suggest that long-chain polyunsaturated fatty acids may be involved in the regulation of blood-brain barrier (Na+ + K+)-ATPase and may play a role in the cerebral dysfunction associated with diseases in which plasma levels of nonesterified fatty acids are elevated.  相似文献   

4.
Abstract: The subcellular distribution of cholecystokinin (CCK), especially its exact localization within the synaptosome, was studied in the rat cerebral cortex. Highest CCK-like bioactivity was measured in the synaptic membrane fractions, paralleling the distribution of (Na++ K+)-dependent ATPase. In the synaptic vesicles, which were characterized by high acetylcholine content and by the absence of (Na++ K+)-ATPase, only minimal quantities of CCK were detected.  相似文献   

5.
Abstract: The hydrolytic and transphosphatidylation activities of rat brain microsomal phospholipase D were highly latent in the absence of an appropriate activator. The most suitable surfactants for this activation were oleate and palmitoleate. Besides the bile acids and unsaturated fatty acids, other naturally occurring surfactants, such as lysophospholipids, acidic phospholipids, acyl-CoA's, and gangliosides, were inactive. Taurodeoxycholate, at optimal concentration, produced a profound inhibition of oleate activation. Phospholipase D activity was detectable in all rat tissues investigated. The optimal incubation temperature for phospholipase D was 30°C, with a break point at 16.1°C in an Arrhenius plot.  相似文献   

6.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

7.
Abstract: Synaptoneurosomal and synaptosomal fractions from the brain cortex of adult (4-month-old) and aged (27-month-old) rats were used for studies on the uptake and subsequent release of [14C]arachidonic acid ([14C]AA) from brain lipids. The incorporation of AA and the pattern of its uptake into lipids of the aged brain cortex synapto-neurosomes and synaptosomes were not significantly different when compared with those in the adult brain cortex fractions. Serotonin (5-HT), at 10 μM to 1 μM in the presence of pargyline and the agonist of the 5-HT1A receptor, buspirone, stimulated AA uptake into membrane lipids, mainly into phosphatidylinositol, by about 40% exclusively in adult brain synaptoneurosomes. Aging significantly diminished the effect of 5-HT on AA uptake. Synaptoneurosomal and synaptosomal fractions prelabeled with [14C]AA were used subsequently for investigation of voltage-dependent, muscarinic and 5-HT receptor-mediated AA release. Aging diminished markedly carbachol-stimulated Ca2+-dependent AA liberation from membrane lipids of synaptoneurosomes and synaptosomes. Moreover, aging decreased voltage-dependent and 5-HT2 receptor-mediated AA release. These results show that aging affects receptor-dependent AA uptake and pre-and postsynaptic receptor-mediated AA release. These modulations of AA incorporation and release in aged brain may be of patho-physiological significance, in view of the importance of these processes for signal transmission in the brain. The changes of receptor-dependent processes of deacylation and reacylation may be responsible for alteration in the function of neuronal cells and may affect learning and memory ability and brain plasticity during aging.  相似文献   

8.
The effects of dibutyryl cyclic AMP (db-cAMP) and dibutyryl cyclic GMP (db-cGMP) were tested on Ca2+-ATPase, Mg2+-ATPase, and (Ca2+ + Mg2+)-ATPase activities in lysed synaptosomes prepared from whole rat brains (minus cerebellum). At concentrations from 0.1 to 2.0 mM, db-cGMP produced a selective, concentration-dependent increase in Ca2+-ATPase activity. Both db-cGMP and db-cAMP slightly reduced Mg2+-ATPase activity, whereas neither compound had concentration-dependent effects on (Ca2+ + Mg2+)-ATPase activity. These findings suggest that the Mg2+-independent, Ca2+-ATPase activity in rat brain is regulated by a cyclic GMP-dependent process. Further, the data provide evidence that the Ca2+-ATPase activity in lysed synaptosomal membranes represents an enzyme that is distinguishable from both the Mg2+ -and (Ca2+ + Mg2+)-ATPase.  相似文献   

9.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

10.
N-methyl-D-aspartate (NMDA) inhibits carbachol-stimulated phosphoinositide breakdown in rat brain cortical slices but not in isolated membranes (1). To gain insight into the mechanisms, we examined the effects of NMDA on carbachol-stimulated [3H]inositol phosphate and intermediates of phosphatidylinositol cycle accumulation in rat cortical slices. The inhibition is primarily on the synthesis of inositol phospholipids subsequent to activation of muscarinic cholinergic receptors. In the absence of lithium, NMDA inhibited carbachol-stimulated [32P]PtdIns but not [32P]PtdOH synthesis. Carbachol-stimulated CDP-DAG formation required trace amount of Ca2+ and the response was inhibited by NMDA at low but not high extracellular Ca2+ concentrations. The inhibition due to NMDA was only seen at millimolar extracellular Mg2+. The inhibition of carbachol-stimulated CDP-DAG formation was not affected by adding tetrodotoxin or cobalt chloride suggesting the inhibitory effect was not due to releasing of neurotransmitters. The inhibitory effects of NMDA could be abolished by MK-801, the specific NMDA receptor associated channel antagonist. When cortical slices were preincubated with ligands and lithium to allow the build up of CDP-DAG, carbachol stimulated the incorporation of [3H]Ins into [3H]PtdIns. However, this response was not inhibited by NMDA. These results suggest that CDP-DAG synthesis is the primary site of regulation by NMDA. Because CDP-DAG cytidyltransferase requires Mg2+ as cofactor and is sensitive to Ca2+ it is possible that NMDA inhibits ligand-stimulated PtdIns breakdown by blocking the replenish of agonist-sensitive PtdIns pool through changes of divalent cation homeostasis.  相似文献   

11.
The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.  相似文献   

12.
The level of nerve membrane cholesterol was altered by in vitro incubation of rat brain synaptosomal plasma membrane with liposomes having varying cholesterol contents. The normal plasma membrane cholesterol/phospholipid ratio of 0.3-0.4 (mol/mol) could be decreased by about one-half or increased more than 100%. Fluorescence polarization measurements were made using the probe 1,6-diphenyl-1,3,5-hexatriene. At temperatures below 35 percent C, lowering membrane cholesterol led to increased apparent microviscosity, while raising cholesterol content produced little change. However, at 45 percent C a continuous direct relationship existed between experimental membrane cholesterol/phospholipid ratio (ranging from 0.18 to 0.73) and apparent microviscosity. Under standard liposome-synaptosomal plasma membrane exchange conditions, 80% of the initial specific [(3)H]saxitoxin binding activity to the voltage-dependent sodium channel and at least 95% of the (Mg2+,K+)-p-nitrophenylphosphatase activity were preserved. Our results indicate that neither the characteristics of toxin binding nor the kinetics of this enzyme activity is dependent upon membrane cholesterol content.  相似文献   

13.
Abstract: The denatured catalytic polypeptide of (Na+, K+)-ATPase of goldfish brain was purified and identified as the 32P-labeled phosphoprotein. The protein served as immunogen for the preparation of rabbit antisera for immunohistochemical application to goldfish tissue sections, using the peroxidase-antiperoxidase indirect method. Labeling in brain cross-sections appears primarily in fibers of the optic nerve layer of the tectum. In optic nerve cross sections, labeling is restricted to fiber bundles.  相似文献   

14.
By using both synaptosomes and cultured astrocytes from rat cerebral cortex, we have investigated the inhibitory action of arachidonic acid on the high-affinity glutamate uptake systems, focusing on the possible physiological significance of this mechanism. Application of arachidonic acid (1-100 microM) to either preparation leads to fast (within 30 s) and largely reversible reduction in the uptake rate. When either melittin (0.2-1 microgram/ml), a phospholipase A2 activator, or thimerosal (50-200 microM), which inhibits fatty acid reacylation in phospholipids, is applied to astrocytes, both an enhancement in extracellular free arachidonate and a reduction in glutamate uptake are seen. The two effects display similar dose dependency and time course. In particular, 10% uptake inhibition correlates with 30% elevation in free arachidonate, whereas inhibition greater than or equal to 60% is paralleled by threefold stimulation of arachidonate release. In the presence of albumin (1-10 mg/ml), a free fatty acid-binding protein, inhibition by either melittin, thimerosal, or arachidonic acid is prevented and an enhancement of glutamate uptake above the control levels is observed. Our data show that neuronal and glial glutamate transport systems are highly sensitive to changes in extracellular free arachidonate levels and suggest that uptake inhibition may be a relevant mechanism in the action of arachidonic acid at glutamatergic synapses.  相似文献   

15.
Two major fractions rich in clathrin-coated vesicles (CVs) (fraction I, rho = 1.140 g/cm3; fraction II, rho = 1.113 g/cm3) were separated from rat brain using a sucrose gradient and compared for their cellular origins and Cl- translocation systems. Electron micrographs showed that both fractions contained CVs of different size distributions (fraction I, 85 +/- 9.5 nm in diameter; fraction II, 72 +/- 6.8 nm in diameter). Fraction II contained potent ouabain-sensitive ATPase activity, whereas fraction I contained only a little activity. Immunoblot analysis for the Na+,K(+)-ATPase catalytic subunit, alpha and alpha(+), demonstrated that fraction II exhibited predominantly alpha(+), whose proportion to alpha was analogous to that observed in the extracts of primary cultured neuronal cells. Furthermore, on a sucrose density gradient, cultured neuronal cells yielded fraction II but not fraction I, whereas primary cultured glial cells yielded fraction I but not fraction II. Labeling-chase experiments using 125I-transferrin in cultured neuronal cells showed the internalized ligand in fraction II and the surface-bound ligand in the fraction with lower density (rho = 1.090 g/cm3), a result suggesting that the involvement of Na+,K(+)-ATPase in fraction II is attributable to endocytic vesicles. Cl- uptake in fraction II was approximately threefold higher than that in fraction I. N-Ethylmaleimide (100 microM) completely inhibited the Cl- uptake in fraction I but partially (approximately 50%) inhibited that in fraction II. These findings suggest that the two CV fractions isolated from rat brain originate from different cell types--glial and neuronal cells--and differ in size distribution of CVs, content of Na+,K(+)-ATPase, and mechanism for Cl- uptake.  相似文献   

16.
The phospholipid and fatty acid composition and role of phospholipids in enzyme and transport function of gastric (H++K+)-ATPase vesicles was studied using phospholipase A2 (bee venom). The composition (%) was phosphatidylcholine (PC) 33%; sphingomyelin (sph) 25%; phosphatidylethanolamine (PE) 22%; phosphatidylserine (PS) 11%; and phosphatidylinositol (PI) 8%. The fatty acid composition showed a high degree of unsaturation. In both fresh and lyophilized preparations, even with prolonged incubation, only 50% of phospholipids were hydrolyzed, but the amount of PE and PS disappearing was increased following lyophilization. There was a marked decrease in K+-ATPase activity (75%) but essentially no loss of the associated K+ p-nitrophenyl phosphatase was found. ATPase activity could be largely restored by various phospholipids (PE > PC > PS). There was also an increase in Mg2+-ATPase activity, partially reversed in fresh preparations by the addition of phospholipids (PE > PS > PC). Proton transport activity of the preparation was rapidly inhibited, initially due to a large increase in the HC1 permeability of the preparation. Associated with these enzymatic and functional changes, the ATP-induced conformational changes, as indicated by circular dichroism spectra were inhibited.  相似文献   

17.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus.  相似文献   

18.
Subcellular membrane fractions were prepared from the salt glands of osmotically-stressed ducklings. Two fractions were characterized biochemically with respect to (Na+ + K+)-ATPase, alkaline phosphodiesterase I, succinate dehydrogenase, esterase, and galactosyltransferase activities and immunochemically with respect to (Na+ + K+)-ATPase. The ratios of the estimates of the (Na+ + K+)-ATPase contents obtained biochemically and immunochemically from the two fractions differed by more than 2 X. The results are consistent with the presence of at least two molecular species of (Na+ + K+)-ATPase, unevenly distributed between the two fractions.  相似文献   

19.
温度对东方铃蟾和中华大蟾蜍肌组织ATP酶活性的影响   总被引:4,自引:0,他引:4  
研究了不同温度对东方铃蟾和中华大蟾肌组织中肌球蛋白钙激活ATP酶活性的影响。结果表明,从16℃上升到32度,两种动物两种肌组织ATP酶活性均逐渐升高,但东方铃蟾ATP酶活性变化比中华大蟾敏感,从32℃上升到44℃,ATP酶活性均下降,但东方铃蟾ATP酶活性变化比中华大蟾更敏感;ATP酶活性的最适温度在32度,ATP酶活性可能与这两种动物的入眠,出眠时间及耐热性有关。  相似文献   

20.
以‘迎庆’桃果实为材料,研究了经外源乙烯(50μL/L)处理12h后,在常温(25℃)下贮藏过程中,果实微粒体膜Ca^2 - ATPase活性和膜脂过氧化水平的变化。结果表明:外源乙烯促进果实内源乙烯的生成,刺激膜Ca^2 - ATPase活性先上升而后下降,同时加速超氧自由基的产生.提高膜脂过氧化产物丙二醛含量.增强了膜脂过氧化作用;钙调素拮抗剂二氟拉嗪(TFP)和钙通道阻塞剂异博定(VER)均在一定程度上抑制乙烯诱导的上述效应,这表明细胞内Ca^2 和CaM参与了外源乙烯反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号