首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcineurin is required for virulence of Cryptococcus neoformans.   总被引:13,自引:0,他引:13       下载免费PDF全文
A Odom  S Muir  E Lim  D L Toffaletti  J Perfect    J Heitman 《The EMBO journal》1997,16(10):2576-2589
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.  相似文献   

2.
Although the immediate receptors (immunophilins) of the immunosuppressants cyclosporin A (CsA) and FK506 are distinct, their similar mechanisms of inhibition of cell signaling suggest that their associated immunophilin complexes interact with a common target. We report here that the complexes cyclophilin-CsA and FKBP-FK506 (but not cyclophilin, FKBP, FKBP-rapamycin, or FKBP-506BD) competitively bind to and inhibit the Ca(2+)- and calmodulin-dependent phosphatase calcineurin, although the binding and inhibition of calcineurin do not require calmodulin. These results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and FK506, respectively, by forming drug-dependent complexes with and altering the activity of calcineurin-calmodulin.  相似文献   

3.
4.
M E Cardenas  R S Muir  T Breuder    J Heitman 《The EMBO journal》1995,14(12):2772-2783
The immunosuppressive complexes cyclophilin A-cyclosporin A (CsA) and FKBP12-FK506 inhibit calcineurin, a heterodimeric Ca(2+)-calmodulin-dependent protein phosphatase that regulates signal transduction. We have characterized CsA- or FK506-resistant mutants isolated from a CsA-FK506-sensitive Saccharomyces cerevisiae strain. Three mutations that confer dominant CsA resistance are single amino acid substitutions (T350K, T350R, Y377F) in the calcineurin A catalytic subunit CMP1. One mutation that confers dominant FK506 resistance alters a single residue (W430C) in the calcineurin A catalytic subunit CMP2. In vitro and in vivo, the CsA-resistant calcineurin mutants bind FKBP12-FK506 but have reduced affinity for cyclophilin A-CsA. When introduced into the CMP1 subunit, the FK506 resistance mutation (W388C) blocks binding by FKBP12-FK506, but not by cyclophilin A-CsA. Co-expression of CsA-resistant and FK506-resistant calcineurin A subunits confers resistance to CsA and to FK506 but not to CsA plus FK506. Double mutant calcineurin A subunits (Y377F, W388C CMP1 and Y419F, W430C CMP2) confer resistance to CsA, to FK506 and to CsA plus FK506. These studies identify cyclophilin A-CsA and FKBP12-FK506 binding targets as distinct, highly conserved regions of calcineurin A that overlap the binding domain for the calcineurin B regulatory subunit.  相似文献   

5.
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.  相似文献   

6.
Cyclosporin A (CsA) and FK506 are potent natural product immunosuppressants that induce their biological effects by forming an initial complex with cytosolic proteins termed immunophilins. These drug immunophilin complexes then bind to and inhibit the serine/threonine protein phosphatase calcineurin (CN). Two classes of immunophilin have been identified with cyclophilins (CyP's) being proteins specifically binding CsA and FKBPs specifically binding FK506. Solution and crystal structures of various CsA-CyP and FK506-FKBP complexes have been determined and show no apparent structural similarity between the two classes of drug protein complexes. These findings raise the question as to how, given their structural differences, these two complexes can both inhibit CN. While the crystal structure of the FK506-FKBP12-CN complex has been reported, no structure for a CsA-CyP CN complex has been determined. Here are reported studies that use various modelling strategies to construct a model for the interaction of the cyclosporin A- cyclophilin A complex with calcineurin. The first stage of constructing this model consisted of using conformational comparison of CsA and FK506, GRID and GROUP analysis and restrained molecular dynamics to dock CsA into the FK506 binding site of the FK506-FKBP12-CN structure. An initial model for the CsA-CyPA-CN complex was then constructed by superimposing the structure of the CsA-CyPA complex onto the docked CsA molecule. This model was then optimised with molecular dynamics simulations run on sterically clashing regions. The validity of the model for the CsA-CyPA-CN complex was then examined with respect to the effect of chemical modifications to CsA and amino acid substitutions within CyPA on the ability of the drug-immunophilin complex to inhibit calcineurin.  相似文献   

7.
The immunosuppressive effects of cyclosporin A (CsA) and FK506 are mediated through binding to immunophilins. Here we show that FK506–FKBP complex suppresses the activation of JNK and p38 pathways at a level upstream of mitogen-activated protein kinase (MAPK) kinase kinase (MAPKK-K) besides the calcineurin–NFAT pathway. A238L, a viral gene product that binds to immunophilin, also blocks activation of both pathways. In contrast, direct inhibitors of calcineurin, Cabin 1 and FR901725, suppress the activation of NFAT but not the JNK or p38 pathway. We further demonstrate that co-expression of a constitutively active NFAT and a constitutively active MEKK1 renders the interleukin-2 promoter in Jurkat T lymphocytes resistant to CsA and FK506, whereas Jurkat cells expressing a constitutively active NFAT alone are still sensitive to CsA or FK506. Therefore, CsA and FK506 exert their immunosuppressive effects through targeting both the calcineurin-dependent NFAT pathway and calcineurin-independent activation pathway for JNK and p38.  相似文献   

8.
The peptidyl-prolyl isomerases FKBP12 and cyclophilin A (immunophilins) form complexes with the immunosuppressants FK506 and cyclosporin A that inhibit the phosphatase calcineurin. With the yeast two hybrid system, we detect complexes between FKBP12 and the calcineurin A catalytic subunit in both the presence and absence of FK506. Mutations in FKBP12 surface residues or the absence of the calcineurin B regulatory subunit perturb the FK506-dependent, but not the ligand-independent, FKBP12-calcineurin complex. By affinity chromatography, both FKBP12 and cyclophilin A bind calcineurin A in the absence of ligand, and FK506 and cyclosporin A respectively potentiate these interactions. Both in vivo and in vitro, the peptidyl-prolyl isomerase active sites are dispensable for ligand-independent immunophilin-calcineurin complexes. Lastly, by genetic analyses we demonstrate that FKBP12 modulates calcineurin functions in vivo. These findings reveal that immunophilins interact with calcineurin in the absence of exogenous ligands and suggest that immunosuppressants may take advantage of the inherent ability of immunophilins to interact with calcineurin.  相似文献   

9.
The reversible inhibition of calcineurin (CaN), which is the only Ca(2+)/calmodulin-dependent protein Ser/Thr phosphatase, is thought to be a key functional event for most cyclosporin A (CsA)- and tacrolimus (FK506)-mediated biological effects. In addition to CaN inhibition, however, CsA and FK506 have multiple biochemical effects because of their action in a gain-of-function model that requires prior binding to immunophilic proteins. We screened a small molecule library for direct inhibitors of CaN using CaN-mediated dephosphorylation of (33)P-labeled 19-residue phosphopeptide substrate (RII phosphopeptide) as an assay and found the polyphenolic aldehyde gossypol to be a novel CaN inhibitor. Unlike CsA and FK506, gossypol does not require a matchmaker protein for reversible CaN inhibition with an IC(50) value of 15 microm. Gossypolone, a gossypol analog, showed improved inhibition of both RII phosphopeptide and p-nitrophenyl phosphate dephosphorylation with an IC(50) of 9 and 6 microm, respectively. In contrast, apogossypol hexaacetate was inactive. Gossypol acts noncompetitively, interfering with the binding site for the cyclophilin 18.CsA complex in CaN. In contrast to CsA and FK506, gossypol does not inactivate the peptidyl-prolyl-cis/trans-isomerase activity of immunophilins. Similar to CsA and FK506, T cell receptor signaling induced by phorbol 12-myristate 13-acetate/ionomycin is inhibited by gossypol in a dose-dependent manner, demonstrated by the inhibition of nuclear factor of activated T cell (NFAT) c1 translocation from the cytosol into the nucleus and suppression of NFAT-luciferase reporter gene activity.  相似文献   

10.
Immunophilins are receptors for immunosuppressive drugs such as the macrolides cyclosporin A (CsA) and FK506; correspondingly these immunophilins are referred to as cyclophilins and FK506-binding proteins (FKBPs). In particular, CsA targets cyclophilin D (CypD), which can modulate mitochondrial Ca(2+) dynamics. Since mitochondria have been implicated in the regulation of astrocytic cytosolic Ca(2+) (Ca(cyt)(2+)) dynamics and consequential Ca(2+)-dependent exocytotic release of glutamate, we investigated the role of CypD in this process. Cortical astrocytes isolated from CypD deficient mice Ppif(-/-) displayed reduced mechanically induced Ca(cyt)(2+) increases, even though these cells showed augmented exocytotic release of glutamate, when compared to responses obtained from astrocytes isolated from wild-type mice. Furthermore, acute treatment with CsA to inhibit CypD modulation of mitochondrial Ca(2+) buffering, or with FK506 to inhibit FKBP12 interaction with inositol-trisphosphate receptor of the endoplasmic reticulum, led to similar reductive effects on astrocytic Ca(cyt)(2+) dynamics, but also to an enhanced Ca(2+)-dependent exocytotic release of glutamate in wild-type astrocytes. These findings point to a possible role of immunophilin signal transduction pathways in astrocytic modulation of neuronal activity at the tripartite synapse.  相似文献   

11.
Good fungi gone bad: the corruption of calcineurin   总被引:17,自引:0,他引:17  
Calcineurin is a Ca(2+)/calmodulin-activated protein phosphatase that is conserved in eukaryotes, from yeast to humans, and is the conserved target of the immunosuppressive drugs cyclosporin A (CsA) and FK506. Genetic studies in yeast and fungi established the molecular basis of calcineurin inhibition by the cyclophilin A-CsA and FKBP12-FK506 complexes. Calcineurin also functions in fungi to control a myriad of physiological processes including cell cycle progression, cation homeostasis, and morphogenesis. Recent investigations into the molecular mechanisms of pathogenesis in Candida albicans and Cryptococcus neoformans, two fungi that cause life-threatening infections in humans, have revealed an essential role for calcineurin in morphogenesis, virulence, and antifungal drug action. Novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that retain antifungal activity have been identified and hold promise as candidate antifungal drugs. In addition, comparisons of calcineurin function in both fungi and humans may identify fungal-specific components of calcineurin-signaling pathways that could be targeted for therapy, as well as conserved elements of calcium signaling events.  相似文献   

12.
T cell receptor (TCR) ligation induces increased diacylglycerol and Ca(2+) levels in T cells, and both secondary messengers are crucial for TCR-induced nuclear factor of activated T cells (NF-AT) and NF-κB signaling pathways. One prominent calcium-dependent enzyme involved in the regulation of NF-AT and NF-κB signaling pathways is the protein phosphatase calcineurin. However, in contrast to NF-AT, which is directly dephosphorylated by calcineurin, the molecular basis of the calcium-calcineurin dependence of the TCR-induced NF-κB activity remains largely unknown. Here, we demonstrate that calcineurin regulates TCR-induced NF-κB activity by controlling the formation of a protein complex composed of Carma1, Bcl10, and Malt1 (CBM complex). For instance, increased calcium levels induced by ionomycin or thapsigargin augmented the phorbol 12-myristate 13-acetate-induced formation of the CBM complex and activation of NF-κB, whereas removal of calcium by the calcium chelator EGTA-acetoxymethyl ester (AM) attenuated both processes. Furthermore, inhibition of the calcium-dependent phosphatase calcineurin with the immunosuppressive agent cyclosporin A (CsA) or FK506 as well as siRNA-mediated knockdown of calcineurin A strongly affected the PMA + ionomycin- or anti-CD3 + CD28-induced CBM complex assembly. Mechanistically, the positive effect of calcineurin on the CBM complex formation seems to be linked to a dephosphorylation of Bcl10. For instance, Bcl10 was found to be hyperphosphorylated in Jurkat T cells upon treatment with CsA or EGTA-AM, and calcineurin dephosphorylated Bcl10 in vivo and in vitro. Furthermore, we show here that calcineurin A interacts with the CBM complex. In summary, the evidence provided here argues for a previously unanticipated role of calcineurin in CBM complex formation as a molecular basis of the inhibitory function of CsA or FK506 on TCR-induced NF-κB activity.  相似文献   

13.
Wang H  Zhou CL  Lei H  Zhang SD  Zheng J  Wei Q 《IUBMB life》2008,60(8):549-554
Calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependant protein phosphatase, is the target for immunosuppressive drugs cyclosporine A (CsA) and FK506. These immunosuppressants can inhibit CN activity after binding with respective immunophilins. Based on the model of screening by using p-nitrophenyl phosphate as a substrate for preliminary screening and (32)P-labeled 19-residue phosphopeptide as a specific substrate for final determination, we found Kaempferol, a natural flavonol, could inhibit CN activity in purified enzyme and Jurkat T-cells. Unlike CsA and FK506, CN inhibition by kaempferol is independent of matchmaker protein and the inhibitory manner is noncompetitive. Through investigation of inhibitions for CNA and a series of its truncated mutants, we suggested that Kaempferol could directly act on the catalytic domain. Data also indicated that the CN inhibition by kaempferol could be enhanced when the enzyme was activated in the presence of CaM and CNB. CNB is necessary for mediating inhibition of enzyme by kaempferol. The result of RT-PCR also indicated that kaempferol had an inhibitory activity against IL-2 gene expression in activated Jurkat cells. All data suggested that kaempferol could be a new immunosuppressant of CN.  相似文献   

14.
15.
Extravasation is a critical process for the physiological lymphocyte traffic as well as the hematogenous spread of malignant hemopoietic cells. Here we report that abrogation of calcineurin activity leads to in vitro transendothelial migration and in vivo infiltration of human lymphoma Nalm-6 cells, which are associated with the abrogation of the VLA-4/VCAM-1 mediated pathway. Rapamycin, which can antagonize FK506 but not CsA to inhibit calcineurin, abrogates FK-506 mediated but not CsA mediated inhibition of in vitro transendothelial migration. FK506 may exert its potent immunosuppressive action partly by inhibiting VLA-4/VCAM-1 mediated transendothelial migration or insinuation of lymphoid cells to tissues.  相似文献   

16.
The immunosuppressants cyclosporin A (CsA) and FK506 appear to block T-cell function by inhibiting the calcium-regulated phosphatase calcineurin. While multiple distinct intracellular receptors for these drugs (cyclophilins and FKBPs, collectively immunophilins) have been characterized, the functionally active ones have not been discerned. We found that overexpression of cyclophilin A or B or FKBP12 increased T-cell sensitivity to CsA or FK506, respectively, demonstrating that they are able to mediate the inhibitory effects of their respective immunosuppressants in vivo. In contrast, cyclophilin C, FKBP13, and FKBP25 had no effect. Direct comparison of the Ki of each drug-immunophilin complex for calcineurin in vitro revealed that although calcineurin binding was clearly necessary, it was not sufficient to explain the in vivo activity of the immunophilin. Subcellular localization was shown also to play a role, since gene deletions of cyclophilins B and C which changed their intracellular locations altered their activities significantly. Cyclophilin B has been shown previously to be located within calcium-containing intracellular vesicles; its ability to mediate CsA inhibition implies that certain components of the signal transduction machinery are also spatially restricted within the cell.  相似文献   

17.
18.
We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.  相似文献   

19.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

20.
Davies TH  Ning YM  Sánchez ER 《Biochemistry》2005,44(6):2030-2038
Many laboratories have documented the existence of tetratricopeptide repeat (TPR) proteins (also known as immunophilins) in hormone-free steroid receptor complexes. Yet, the distinct roles of these proteins in steroid receptor action are poorly understood. In this work, we have investigated the effects of four TPR proteins (FKBP52, FKBP51, Cyp40, and PP5) on hormone-binding function of glucocorticoid receptor (GR) endogenously expressed in mammalian L929 cells. As a first step, we treated L929 cells with select immunophilin ligands [FK506, rapamycin, cyclosporin A (CsA), and cyclosporin H (CsH)], which are commonly thought to increase the GR response to hormone by inhibiting membrane-based steroid exporters. As expected, all four immunophilin ligands increased both the intracellular concentration of dexamethasone and GR activity at the MMTV-CAT reporter. To determine whether these ligands could target GR function independent of steroid export mechanisms, we performed GR reporter gene assays under conditions of immunophilin ligand and dexamethasone treatment that yielded equal intracellular hormone concentrations. FK506 was found to stimulate GR transactivity beyond the effect of this ligand on hormone retention. In contrast, CsA only affected the GR through upregulation of hormone retention. By Scatchard analysis, FK506 was found to increase GR hormone-binding affinity while decreasing total binding sites for hormone. This result correlated with loss of GR-associated FKBP51 and replacement with PP5. Interestingly, no GR-associated Cyp40 was found in these cells, consistent with the ability of CsA ligand to only affect GR through the hormone export mechanism. To test the role of FKBP52 independent of FK506, FKBP52 was placed under the control of a tetracycline-inducible promoter. Upregulation of FKBP52 caused an increase in both GR hormone-binding affinity and transactivity, even in the absence of FK506. These results show that immunosuppressive ligands can alter GR hormone-binding function by changing the TPR protein composition of receptor complexes and that TPR proteins exert a hierarchical effect on this GR function in the following order: FKBP52 > PP5 > FKBP51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号