首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha(2)-adrenergic receptors (alpha(2)AR) couple to multiple effectors including adenylyl cyclase and phospholipase C. We hypothesized that signaling selectivity to these effectors is dynamically directed by kinase-sensitive domains within the third intracellular loop of the receptor. Substitution of Ala for Ser232, which is in the N-terminal region of this loop in the alpha(2A)AR, resulted in a receptor that was markedly uncoupled ( approximately 82% impairment) from stimulation of inositol phosphate accumulation while the capacity to inhibit adenylyl cyclase remained relatively intact. In S232A alpha(2A)AR transfected cell membranes, agonist-promoted [(35)S]GTPgammaS binding was reduced by approximately 50%. Coexpression of modified G proteins rendered insensitive to pertussis toxin revealed that the S232A receptor was uncoupled from both G(i) and G(o). S232 is a potential PKC phosphorylation site, and whole cell phosphorylation studies showed that the mutant had depressed phosphorylation compared to wild type (1.3- vs 2.1-fold/basal). Consistent with S232 directing coupling to phospholipase C, PMA exposure resulted in approximately 67% desensitization of agonist-promoted inositol phosphate accumulation without significantly affecting inhibition of adenylyl cyclase. The dominant effect of mutation or phosphorylation at this site on inositol phosphate as compared to cAMP signaling was found to most likely be due to the low efficiency of signal transduction via phospholipase C vs adenylyl cyclase. Taken together, these results indicate that S232 acts as a selective, PKC-sensitive, modulator of effector coupling of the alpha(2A)AR to inositol phosphate stimulation. This represents one mechanism by which cells route stimuli directed to multifunctional receptors to selected effectors so as to attain finely targeted signaling.  相似文献   

2.
Ca(2+) elevations in Chinese hamster ovary cells stably expressing OX(1) receptors were measured using fluorescent Ca(2+) indicators fura-2 and fluo-3. Stimulation with orexin-A led to pronounced Ca(2+) elevations with an EC(50) around 1 nm. When the extracellular [Ca(2+)] was reduced to a submicromolar concentration, the EC(50) was increased 100-fold. Similarly, the inositol 1,4,5-trisphosphate production in the presence of 1 mm external Ca(2+) was about 2 orders of magnitude more sensitive to orexin-A stimulation than in low extracellular Ca(2+). The shift in the potency was not caused by depletion of intracellular Ca(2+) but by a requirement of extracellular Ca(2+) for production of inositol 1,4,5-trisphosphate. Fura-2 experiments with the "Mn(2+)-quench technique" indicated a direct activation of a cation influx pathway by OX(1) receptor independent of Ca(2+) release or pool depletion. Furthermore, depolarization of the cells to +60 mV, which almost nullifies the driving force for Ca(2+) entry, abolished the Ca(2+) response to low concentrations of orexin-A. The results thus suggest that OX(1) receptor activation leads to two responses, (i) a Ca(2+) influx and (ii) a direct stimulation of phospholipase C, and that these two responses converge at the level of phospholipase C where the former markedly enhances the potency of the latter.  相似文献   

3.
Effector coupling mechanisms of the cloned 5-HT1A receptor   总被引:12,自引:0,他引:12  
The signal transduction pathways of the cloned human 5-HT1A receptor have been examined in two mammalian cell lines transiently (COS-7) or permanently (HeLa) expressing this receptor gene. In both systems, 5-hydroxytryptamine (5-HT, serotonin) mediated a marked inhibition of beta 2-adrenergic agonist-stimulated (80% inhibition in COS-7 cells) or forskolin-stimulated cAMP formation (up to 90% inhibition in HeLa cells). This serotonin effect (EC50 = 20 nM) could be competitively antagonized by metitepine and spiperone (Ki = 81 and 31 nM, respectively) and could also be blocked by pretreatment of cells with pertussis toxin. In both cell types, 5-HT failed to stimulate adenylyl cyclase through the expressed receptors. In HeLa cells, 5-HT also stimulated phospholipase C (approximately 40-75% stimulation of formation of inositol phosphates). Again, this effect was inhibited by metitepine. However, the EC50 of 5-HT was considerably higher (approximately 3.2 microM) than that found for inhibition of adenylyl cyclase. Both pathways were demonstrated to be similarly affected by pertussis toxin. These findings indicate that like the M2 and M3 muscarinic cholinergic receptors, the 5-HT1A receptor can couple to multiple transduction pathways with varying efficiencies via pertussis toxin-sensitive G-proteins. The lack of stimulation of cAMP formation by this 5-HT1A receptor may suggest the existence of another pharmacologically closely related receptor.  相似文献   

4.
Orexin-A is a neuropeptide consisting of 33 amino acids with two intrachain disulfide bonds, namely Cys6-Cys12 and Cys7-Cys14, and is a potent stimulator of food consumption and gastric acid secretion. In contrast, orexin-B, a peptide containing 28 amino acids without disulfide bond, which has no stimulatory action of gastric acid. The objective of the present study was to characterize the receptor-mediated mechanism of orexin-A-induced stimulation of gastric acid secretion using orexin-A-related peptides with modification of disulfide bonds. Intracisternal injection of orexin-A, but not orexin-B or orexin-A (15-33), that does not contain both disulfide bonds stimulated gastric acid secretion in pylorus-ligated conscious rats. The ability of the stimulation of gastric acid output was less in three alanine-substituted orexin-A, [Ala(6,12)]orexin-A, [Ala(7,14)]orexin-A, and [Ala(6,7,12,14)]orexin-A, than orexin-A. Orexins-induced calcium increase was measured in CHO-K1 cells expressing OX1R or OX2R. Orexin-A induced a transient increase in [Ca(2+)]i in CHO-K1/OX1R cells in a dose-dependent manner. EC50 values for OX1R of orexin-A, orexin-B, or orexin-A (15-33) was 0.068, 0.69 or 4.1 nM, respectively, suggesting that peptides containing no disulfide bonds have lower potency for the receptor. Agonistic activity for OX1R of the three orexin-A analogues with modification of one or both disulfide bonds was significantly reduced as compared with that of orexin-A. EC50 values for OX2R of orexin-A and orexin-B was almost equal but potency for the receptor of orexin-A (15-33) and three alanine substituted orexin-A was less than that of orexin-A. A significant inverse relationship between gastric acid output and EC50 values for OX1R, but not OX2R, was observed. These results suggested that the orexin-A-induced acid stimulation requires OX1R activation and that disulfide bonds in orexin-A may have a key role in the receptor activation.  相似文献   

5.
6.
Orexin-A and orexin-B orchestrate their diverse central and peripheral effects via two G-protein coupled receptors, OX1R and OX2R, which activate multiple G-proteins. In many tissues, orexins activate extracellular signal-regulated kinase (ERK(1/2)) and p38 mitogen-activated protein kinase (MAPK); however, the mechanism by which OX2R alone mediates MAPK activation is not understood. This study describes the intracellular signalling pathways involved in OX2R-mediated ERK(1/2) and p38 MAPK activation. In HEK-293 cells stably over-expressing recombinant human OX2R, orexin-A/B resulted in a rapid, dose and time dependent increase in activation of ERK(1/2) and p38 MAPK, with maximal activation at 10 min for ERK(1/2) and 30 min for p38 MAPK. Using dominant-negative G-proteins and selective inhibitors of intracellular signalling cascades, we determined that orexin-A and orexin-B induced ERK(1/2) and p38 MAPK activation through multiple G-proteins and different intracellular signalling pathways. ERK(1/2) activation involves Gq/phospholipase C (PLC)/protein kinase C (PKC), Gs/adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) and Gi cascades; however, the Gq/PLC/PKC pathway, as well as PKA is not required for OX2R-mediated p38 MAPK activation. Interestingly, orexin-B-induced ERK(1/2) activation is predominantly mediated through the Gq/PLC/PKC pathway. In conclusion, this is the first comprehensive signalling study of the human OX2R recombinant receptor, showing ERK(1/2) and p38 MAPK activation are regulated by differential signalling pathways in HEK-293 cells, and that the ERK(1/2) activation is severely affected by naturally occurring mutants associated with narcolepsy. Moreover, it is evident that the human OX2R has ligand specific effects, with orexin-B being more potent in this transfected system and this distinct modulation of the MAPKs through OX2R, may translate to the regulation of diverse biological actions of orexins.  相似文献   

7.
The M1-muscarinic cholinergic receptor (M1AChR) stimulates the release of inositol phosphates (IPs) but does not activate adenylyl cyclase. The beta-adrenergic receptor (beta-AR) stimulates adenylyl cyclase but has no effect on IP release. Amino acid sequences corresponding to the second (I2) and third (I3) intracellular loops of the turkey erythrocyte beta-AR and a 12-amino acid segment near the N-terminal end of the I3 region were substituted into the corresponding regions of the human M1AChR. Chimeric receptors that contained either the entire I3 loop or the N-terminal dodecapeptide of that loop both mediated the 2-4-fold stimulation of adenylyl cyclase activity in membrane fractions of COS, A293, or Sf9 cells in response to carbachol. These chimeric receptors also retained the ability to stimulate IP release to the same extent as did the M1AChR. In COS cells transfected with the I3 chimeric receptor, the EC50 for carbachol was approximately 7 microM for the stimulation of adenylyl cyclase and approximately 2 microM for the release of IP; M1AChR-mediated IP release displayed an EC50 of approximately 0.2 microM. Substitution of the I2 region of the beta-AR into the M1AChR did not by itself alter selectivity for signaling. However, the I2+I3 and I2+dodecapeptide combined replacements stimulated adenylyl cyclase fully and caused at most 25% of the maximal stimulation of IP release observed with the M1AChR. Thus, a small region in the third cytoplasmic loop can alter the G proteins to which a receptor is coupled, but interaction among loops is evidently involved in fully determining G protein selectivity.  相似文献   

8.
The possible effect of cholera toxin (CTX) on hormonal inhibition of adenylyl cyclase in somatostatin (SST)-sensitive GH3 cells was quantitatively evaluated. The toxin treatment employed led to an essentially complete ADP ribosylation of all alpha s subunits of the stimulatory regulatory component (Gs) of the system and to ca. 5- to 7-fold increases in the activity measured, yet it failed to affect the inhibitory action of SST regardless of whether analyzed in terms of degree of inhibition (ca. 60%) that is attainable or in terms of the apparent Kact with which the inhibitory hormone elicits its action. In absolute terms the activity inhibited after CTX was ca. 6 times larger than that inhibited under control conditions, indicating that SST is equally effective in regulating control and CTX-stimulated adenylyl cyclase system and that interpretations are independent of possible intramembraneous compartmentalizations of adenylyl cyclase and its various regulatory components. Since CTX-mediated ADP ribosylation of the alpha-subunits of Gs has been demonstrated to result in an at least 10-fold decrease in the potency (i.e. EC50) with which the beta gamma-complexes of G proteins act to stabilize preactivated purified alpha-subunits of Gs and in an approximately 300-fold decrease in the potency with which exogenously added beta gamma-complexes act to prevent activation of Gs in intact membranes, the present data indicate that beta gamma-complexes cannot be mediating the inhibitory effects of hormones by interfering with activation of the Gs of adenylyl cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4beta-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4alpha-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 microM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (approximately 85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10(-9)-10(-5) M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10(-6)-10(-5) M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16,16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.  相似文献   

10.
B Kühn  T Gudermann 《Biochemistry》1999,38(38):12490-12498
Binding of lutropin/choriogonadotropin (LH/CG) to its cognate receptor results in the activation of adenylyl cyclase and phospholipase C. This divergent signaling of the LH receptor is based on the independent activation of distinct G protein subfamilies, i.e. , Gs, Gi, and potentially also Gq. To examine the selectivity of LH receptor coupling to phospholipase C beta-activating G proteins, we used an in vivo reconstitution system based on the coexpression of the LH receptor and different G proteins in baculovirus-infected insect cells. In this paper, we describe a refined expression strategy for the LH receptor in insect cells. The receptor protein was inserted into the cell membrane at an expression level of 0.8 pmol/mg of membrane protein. Sf9 cells expressing the LH receptor responded to hCG challenge with a concentration-dependent accumulation of intracellular cAMP (EC50 = 630 nM) but not of inositol phosphates, whereas stimulation of the histamine H1 receptor in Sf9 cells led to increased phospholipase C (PLC) activity. Immunoblotting experiments using G protein-specific antisera revealed the absence of quantitative amounts of alpha i in Sf9 cells, whereas alpha s and alpha q/11 were detected. We therefore attempted to restore the hCG-dependent PLC activation by infection of Sf9 cells with viruses encoding the LH receptor and different G protein alpha subunits. HCG stimulation of cells coexpressing the LH receptor and exogenous alpha i2 resulted in stimulation of PLC activity. In cells coinfected with an alpha i3-baculovirus, hCG challenge led to a minor activation of PLC, whereas no hCG-dependent PLC stimulation was observed in cells coexpressing alpha i1. Most notably, coinfection with baculoviruses encoding alpha q or alpha 11 did not reproduce the PLC activation by the LH receptor. Thus, the murine LH receptor activates adenylyl cyclase via Gs and PLC via selective coupling to Gi2.  相似文献   

11.
Kam Y  Chow KB  Wise H 《Cellular signalling》2001,13(11):841-847
Octimibate and related nonprostanoid prostacyclin mimetics are partial agonists displaying highly tissue-specific responses. Octimibate demonstrated considerably greater efficacy for stimulation of adenylyl cyclase activity in Chinese hamster ovary cells transiently expressing mouse prostacyclin receptors (mIP-CHO cells) when compared to human SK-N-SH neuroblastoma cells, which endogenously express prostacyclin (IP) receptors. Pretreatment of both cell types with pertussis toxin (PTx) failed to influence IP agonist efficacy or potency, indicating a lack of involvement of an agonist-stimulated inhibitory G(i)-coupled pathway. Although stimulation of mIP-CHO cells with the full agonist cicaprost increased both [3H]cyclic AMP and [3H]inositol phosphate ([3H]IP) accumulation (pEC(50) values of 8.35 and 6.82, respectively), IP receptor signalling through G(q) in SK-N-SH cells was absent. Inhibition of protein kinase C (PKC) in mIP-CHO cells increased [3H]IP accumulation but had no effect on [3H]cyclic AMP accumulation. Therefore, the poor coupling of the IP receptor in SK-N-SH cells to G(q) is unlikely to explain the relatively low efficacy of octimibate for stimulating adenylyl cyclase in these cells. Furthermore, protein kinase A (PKA) inhibition appears to enhance IP receptor signalling through both G(s) and G(q) in mIP-CHO cells.  相似文献   

12.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

13.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   

14.
Inhibition of prostaglandin synthesis by the drug indomethacin suppresses the synthesis of the cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), and leads to a metabolic state comparable to type II diabetes. It was of interest whether prostaglandin-deficiency likewise causes sensitization of adenylyl cyclase, as this has been reported for the diabetic state. In liver plasma membranes of indomethacin-treated male rats, basal and forskolin-stimulated cyclic AMP synthesis remained unchanged when compared to untreated control rats. In control rats, stimulation of cyclic AMP synthesis by fluoride (2.2-fold) or glucagon (3.5-fold) was much lower than stimulation by forskolin (6.6-fold). In contrast, in indomethacin-treated rats, stimulation of cAMP synthesis by fluoride (4.6-fold) or glucagon (5.2-fold) nearly matched the stimulation by forskolin (6.4-fold). The level of alpha1-adrenergic receptors was slightly reduced, from 450 to 320 fmol/mg protein, by the indomethacin treatment. Independent of the treatment by indomethacin, stimulation of cyclic AMP synthesis by adrenaline failed, in agreement with the low density of adrenergic beta-receptors. In conclusion, PGE deficiency sensitizes adenylyl cyclase in rat liver for G protein-coupled receptors (glucagon) and also for fluoride.  相似文献   

15.
ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999   总被引:15,自引:0,他引:15  
P2Y receptors are a class of G protein-coupled receptors activated primarily by ATP, UTP, and UDP. Five mammalian P2Y receptors have been cloned so far including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. P2Y1, P2Y2, and P2Y6 couple to the activation of phospholipase C, whereas P2Y4 and P2Y11 couple to the activation of both phospholipase C and the adenylyl cyclase pathways. Additional ADP receptors linked to Galpha(i) have been described but have not yet been cloned. SP1999 is an orphan G protein-coupled receptor, which is highly expressed in brain, spinal cord, and blood platelets. In the present study, we demonstrate that SP1999 is a Galpha(i)-coupled receptor that is potently activated by ADP. In an effort to identify ligands for SP1999, fractionated rat spinal cord extracts were assayed for Ca(2+) mobilization activity against Chinese hamster ovary cells transiently transfected with SP1999 and chimeric Galpha subunits (Galpha(q/i)). A substance that selectively activated SP1999-transfected cells was identified and purified through a series of chromatographic steps. Mass spectral analysis of the purified material definitively identified it as ADP. ADP was subsequently shown to inhibit forskolin-stimulated adenylyl cyclase activity through selective activation of SP1999 with an EC(50) of 60 nM. Other nucleotides were able to activate SP1999 with a rank order of potency 2-MeS-ATP = 2-MeS-ADP > ADP = adenosine 5'-O-2-(thio)diphosphate > 2-Cl-ATP > adenosine 5'-O-(thiotriphosphate). Thus, SP1999 is a novel, Galpha(i)-linked receptor for ADP.  相似文献   

16.
The binding of calcitonin gene-related peptide (CGRP) to L6 myocytes, the coupling of this receptor to adenylyl cyclase and the resultant effects on insulin-stimulated 2-deoxyglucose uptake were examined. L6 cells express specific binding sites for CGRP. Binding of human [125I]CGRP was inhibited by rat CGRP with an IC50 of approximately 10(-9) M. Synthetic human calcitonin at concentrations up to 10(-6) M had no effect on the binding of CGRP, suggesting that L6 cells express CGRP receptors, rather than calcitonin receptors which are also capable of binding CGRP. The CGRP receptor appeared to be coupled to adenylyl cyclase. Concentrations of CGRP greater than 3 x 10(-9) M increased the cellular content of cAMP. At 3 x 10(-8) M, CGRP increased cAMP 500-fold. CGRP at 10(-10) M and above suppressed the stimulation of 2-deoxyglucose uptake by insulin. Acute incubation of L6 cells with insulin stimulated 2-deoxyglucose uptake 1.6-fold, which was inhibited up to 70% by CGRP. Our results demonstrate that the specific binding of CGRP to L6 cells causes large increase in the cellular content of cAMP - and inhibition of insulin-stimulated 2-deoxyglucose uptake, but the differences in the dose-response curves suggest that the suppression of insulin action by CGRP cannot be solely explained by the increase in cAMP.  相似文献   

17.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

18.
We have studied the involvement of GTP-binding proteins in the stimulation of phospholipase C from rat pancreatic acinar cells. Pretreatment of permeabilized cells with activated cholera toxin inhibited both cholecystokinin-octapeptide (CCK-OP) and GTPγS but not carbachol (CCh)-induced production of inositol trisphosphate. Pertussis toxin had no effect. Neither vasoactive intestinal polypeptide, a stimulator of adenylyl cyclase, nor the cAMP-analogue, 8-bromo cAMP, mimicked the inhibitory effect of cholera toxin on agonist-induced phospholipase C activation. This indicates that inhibition by cholera toxin could not be attributed to a direct interaction of cholera toxin activated Gs with phospholipase C or to an elevation of cAMP. In isolated rat pancreatic plasma membranes cholera toxin ADP-ribosylated a 40 kDa protein, which was inhibited by CCK-OP but not by CCh. We conclude from these data that both CCK- and muscarinic acetylcholine receptors functionally couple to phospholipase C by two different GTP-binding proteins.  相似文献   

19.
20.
RS-93427, a novel analog of prostacyclin, increased adenylate cyclase activity in human platelet membranes (EC50 = 42 nM) to approximately the same maximum level as that produced by prostacyclin (EC50 = 87 nM). The concentration-response curve for RS-93427 appeared to be monophasic. However, a selective prostaglandin D2 antagonist (BW A868C) significantly reduced the stimulation of adenylate cyclase produced by low concentrations of RS-93427 (3.2 to 32 nM). RS-93520, a stereoisomer of RS-93427, also stimulated adenylate cyclase activity but in a biphasic pattern. BW A868C reduced the activation produced by low concentrations of RS-93520 with a 100-fold shift in the response curve. Maximum stimulation by RS-93520 (4.5-fold) was less than that obtained with prostaglandin D2 (7.3-fold). Thus, the stimulation of adenylate cyclase activity by low concentrations of RS-93520 is due to an interaction with prostaglandin D2 receptors while the activation by RS-93427 is mediated by both prostacyclin and prostaglandin D2 receptors. Additional data in support of these conclusions was obtained when these prostaglandins were tested as inhibitors of ADP-induced platelet aggregation in the presence or absence of BW A868C. The potent stimulation of prostaglandin receptors with chimeric molecules provides some insight into the structural features required for receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号