首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1−/− fetuses, and the phenotype was more severe in Gli1−/−;Gli2−/− newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Background

Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes.

Methodology/Principal Findings

Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.

Conclusions/Significance

Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.  相似文献   

14.
The type X collagen gene, COLIOA1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COLIOA1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COLIOA1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondroeyte-specific murine type X collagen gene (CollOal) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific CoHOal expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATcl, Sox9 etc.), while other co-factors or epigenetic control of CollOal expression may not be excluded.  相似文献   

15.

Background

Choline kinase has three isoforms encoded by the genes Chka and Chkb. Inactivation of Chka in mice results in embryonic lethality, whereas Chkb−/− mice display neonatal forelimb bone deformations.

Methods

To understand the mechanisms underlying the bone deformations, we compared the biology and biochemistry of bone formation from embryonic to young adult wild-type (WT) and Chkb−/− mice.

Results

The deformations are specific to the radius and ulna during the late embryonic stage. The radius and ulna of Chkb−/− mice display expanded hypertrophic zones, unorganized proliferative columns in their growth plates, and delayed formation of primary ossification centers. The differentiation of chondrocytes of Chkb−/− mice was impaired, as was chondrocyte proliferation and expression of matrix metalloproteinases 9 and 13. In chondrocytes from Chkb−/− mice, phosphatidylcholine was slightly lower than in WT mice whereas the amount of phosphocholine was decreased by approximately 75%. In addition, the radius and ulna from Chkb−/− mice contained fewer osteoclasts along the cartilage/bone interface.

Conclusions

Chkb has a critical role in the normal embryogenic formation of the radius and ulna in mice.

General Significance

Our data indicate that choline kinase beta plays an important role in endochondral bone formation by modulating growth plate physiology.  相似文献   

16.
17.
18.
19.

Background

Rainbow trout have an XX/XY genetic mechanism of sex determination where males are the heterogametic sex. The homology of the sex-determining gene (SDG) in medaka to Dmrt1 suggested that SDGs evolve from downstream genes by gene duplication. Orthologous sequences of the major genes of the mammalian sex determination pathway have been reported in the rainbow trout but the map position for the majority of these genes has not been assigned.

Results

Five loci of four candidate genes (Amh, Dax1, Dmrt1 and Sox6) were tested for linkage to the Y chromosome of rainbow trout. We exclude the role of all these loci as candidates for the primary SDG in this species. Sox6i and Sox6ii, duplicated copies of Sox6, mapped to homeologous linkage groups 10 and 18 respectively. Genotyping fishes of the OSU × Arlee mapping family for Sox6i and Sox6ii alleles indicated that Sox6i locus might be deleted in the Arlee lineage.

Conclusion

Additional candidate genes should be tested for their linkage to the Y chromosome. Mapping data of duplicated Sox6 loci supports previously suggested homeology between linkage groups 10 and 18. Enrichment of the rainbow trout genomic map with known gene markers allows map comparisons with other salmonids. Mapping of candidate sex-determining loci is important for analyses of potential autosomal modifiers of sex-determination in rainbow trout.  相似文献   

20.

Background

Endochondral ossification is a complex process involving a series of events that are initiated by the establishment of a chondrogenic template and culminate in its replacement through the coordinated activity of osteoblasts, osteoclasts and endothelial cells. Comprehensive analyses of in vivo gene expression profiles during these processes are essential to obtain a complete understanding of the regulatory mechanisms involved.

Methodology/Principal Findings

To address these issues, we completed a microarray screen of three zones derived from manually segmented embryonic mouse tibiae. Classification of genes differentially expressed between each respective zone, functional categorization as well as characterization of gene expression patterns, cytogenetic loci, signaling pathways and functional motifs both confirmed reported data and provided novel insights into endochondral ossification. Parallel comparisons of the microdissected tibiae data set with our previously completed micromass culture screen further corroborated the suitability of micromass cultures for modeling gene expression in chondrocyte development. The micromass culture system demonstrated striking similarities to the in vivo microdissected tibiae screen; however, the micromass system was unable to accurately distinguish gene expression differences in the hypertrophic and mineralized zones of the tibia.

Conclusions/Significance

These studies allow us to better understand gene expression patterns in the growth plate and endochondral bones and provide an important technical resource for comparison of gene expression in diseased or experimentally-manipulated cartilages. Ultimately, this work will help to define the genomic context in which genes are expressed in long bones and to understand physiological and pathological ossification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号