首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Balb/c mice inoculated with a heart-adapted variant of coxsackievirus, group B, type 3 (CVB3M) develop severe myocarditis characterized by extensive focal lesions of inflammatory cells and necrosis of the myocardium. Females generally develop minimal myocarditis except when infected during the first and third trimesters of pregnancy. Enhanced myocarditis is usually accompanied by elevations in virus concentrations in the heart, virus-specific antibody titers, and lymphocyte mediated cytolytic activity to both uninfected and CVB3M-infected myocytes in vitro. As previously shown in males, T-lymphocyte-depleted pregnant female mice inoculated with the virus do not develop significant myocarditis indicating that immune rather than virus-mediated myocyte damage is important in myocarditis. Progesterone increases during gestation reaching maximum concentrations during the third week when heart disease is most severe. Administration of progesterone to castrated male and female mice prior to virus inoculation resulted in increased virus concentrations, cellular and humoral CVB3M-specific immunity, and myocarditis. Two hypotheses for exacerbation of the disease with elevated progesterone concentrations have been postulated: the hormone either indirectly increases cellular immune responses by enhancing virus replication, or independently enhances both T-cell responses and virus replication.  相似文献   

2.
The role of natural killer cells in the temporal development of coxsackievirus B3-induced myocarditis in adolescent CD-1 male mice was examined. Inoculation of purified CVB3m induced maximum NK cell activity in the splenic populations at 3 days postinoculation (p.i.) as assessed by lysis of YAC-1 cells; maximum virus titers in heart tissues were also found at day 3 p.i. Mice depleted of NK cells after injection of anti-asialo GM1 antiserum i.v. had decreased NK cell activity, increased CVB3m titers in heart tissues, and exacerbated myocarditis. Although lesion number was not increased in heart tissues of the latter mice, lesions in these mice exhibited increased myocyte degeneration and dystrophic calcification above that found in lesions of mice inoculated with CVB3m only. No alteration in interferon titers were observed in CVB3m-infected mice treated with anti-asialo GM1 antiserum as compared with normal CVB3m-infected mice. Measurements of splenic NK cell activity in mice inoculated with doses of 10(2) to 10(8) PFU of CVB3m per mouse or UV-irradiated virus suggest that replication of CVB3m is required for NK cell activation. An amyocarditic variant of CVB3m (ts5R) was shown to replicate in heart tissues and to elicit NK cell activity comparable to that elicited by CVB3m. Therefore, the data suggest that NK cell activation depends on virus replication and that these cells provide some protection against CVB3m-induced myocarditis by limiting virus replication in heart tissues.  相似文献   

3.

Aims

This study aims to compare the effects of carvedilol and metoprolol in alleviating viral myocarditis (VMC) induced by coxsackievirus B3 (CVB3) in mice.

Methods

A total of 116 Balb/c mice were included in this study. Ninety-six mice were inoculated intraperitoneally with CVB3 to induce VMC. The CVB3 inoculated mice were evenly divided into myocarditis group (n = 32), carvedilol group (n = 32) and metoprolol group (n = 32). Twenty mice (control group) were inoculated intraperitoneally with normal saline. Hematoxylin and eosin staining and histopathologic scoring were used to investigate the effects of carvedilol and metoprolol on myocardial histopathologic changes on days 3 and 5. In addition, serum cTn-I levels, cytokine levels and virus titers were determined using chemiluminescence immunoassay, enzyme-linked immunosorbent assay and plaque assay, respectively, on days 3 and 5. Finally, the levels of phosphorylated p38MAPK were studied using immunohistochemical staining and Western blotting on day 5.

Results

Carvedilol had a stronger effect than metoprolol in reducing the pathological scores of VMC induced by CVB3. Both carvedilol and metoprolol reduced the levels of cTn-I, but the effect of carvedilol was stronger. Carvedilol and metoprolol decreased the levels of myocardial pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokine, with the effects of carvedilol being stronger than those of metoprolol. Carvedilol had a stronger effect in reducing myocardial virus concentration compared with metoprolol. Carvedilol was stronger than metoprolol in decreasing the levels of myocardial phosphorylated p38MAPK.

Conclusions

In conclusion, carvedilol was more potent than metoprolol in ameliorating myocardial lesions in VMC, probably due to its stronger modulation of the balance between pro- and anti-inflammatory cytokines by inhibiting the activation of p38MAPK pathway through β1- and β2-adrenoreceptors.  相似文献   

4.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

5.
Coxsackievirus B3 infection causes significant cardiac inflammation in male, but not female, B1.Tg.Ealpha mice. This gender difference in disease susceptibility correlates with selective induction of CD4(+) Th1 (gamma interferon-positive) cell responses in animals with testosterone, whereas estradiol promotes preferential CD4(+) Th2 (interleukin-4 positive [IL-4(+)]) cell responses. Differences in immune deviation of CD4(+) T cells cannot be explained by variation in B7-1 or B7-2 expression. Infection significantly upregulated both molecules, but no differences were detected between estradiol- and testosterone-treated groups. Significantly increased numbers of activated (CD69(+)) T cells expressing the gammadelta T-cell receptor were found in male and testosterone-treated male and female mice. In vivo depletion of gammadelta+ cells by using monoclonal antibodies inhibited myocarditis and resulted in a shift from a Th1 to Th2 response phenotype. Taken together, our results indicate that testosterone promotes a CD4(+) Th1 cell response and myocarditis by promoting increased gammadelta+ cell activation.  相似文献   

6.
AimTo investigate whether losartan has protective effects in mice with chronic viral myocarditis induced by coxsackievirus B3 (CVB3).Main methodsThirty two male Balb/c mice were intraperitoneally injected with CVB3 (10 × TCID50) to induce chronic viral myocarditis (CVM). Losartan at 12.5 mg/kg (n = 16) or normal saline (n = 16) were orally administered daily for 28 days to these mice. Uninfected mice (n = 6) were used as controls. On day 29, all mice underwent anesthesia and echocardiography prior to sacrifice. Serum IL-17, IL-4, IFN-γ and TNF-α levels were measured by enzyme-linked immunosorbent assay, and cardiac tissues were histologically examined after hematoxylin & eosin staining. In addition, the effect of losartan on the virus titers in primary cultured neonatal rat cardiomyocytes infected with CVB3 was measured on Hep-2 cells at 72 h post infection.Key findingsMice infected with CBV3 had significantly increased mortality, heart/body weight ratios, necrosis and inflammatory scores and decreased cardiac ejection fractions, compared with the controls (all P < 0.05). Losartan significantly decreased mortality from 40.0% to 12.5%, heart/body weight ratios from 7.08 ± 2.17 to 4.15 ± 0.99, and necrosis and inflammatory scores from 3.33 ± 0.50 to 2.50 ± 0.65 (all P < 0.05), and increased ejection fractions from 55.80 ± 9.25 to 72.31 ± 12.15 (P < 0.05). Losartan significantly enhanced IL-4, and decreased IFN-γ, TNF-α and IL-17 (all P < 0.05). In the in vitro experiment, losartan had no influence on virus titers.SignificanceLosartan protects mice against CVB3-induced CVM, most likely through upregulating Th2 responses, and down-regulating Th1 and Th17 responses.  相似文献   

7.
(3)J proton-proton coupling constants bear information on the intervening dihedral angles. Methods have been developed to derive this information from NMR spectra of proteins. Using series expansion of the time dependent density matrix, and exploiting the simple topology of amino acid spin-systems, formulae for estimation of (3)J(HN-Halpha) and (3)J(Halpha-Hbeta) from HSQC-TOCSY spectra are derived. The results obtained on a protein entailing both alpha-helix and beta-sheet secondary structure elements agree very well with J-coupling constants computed from the X-ray structure. The method compares well with existing methods and requires only 2D spectra which would be typically otherwise recorded for structural studies.  相似文献   

8.
A Henke  S Huber  A Stelzner    J L Whitton 《Journal of virology》1995,69(11):6720-6728
Coxsackievirus infections have previously been shown to cause acute or chronic myocarditis in humans, and several mouse models have been established to study the pathology of this disease. Myocardial injury may result from direct viral effects and/or may be immune mediated. To determine the relative roles of these processes in pathogenesis, we have compared coxsackievirus B3 (CVB3) infections of normal and immuno-compromised transgenic knockout (ko) mice. CVB3 was able to infect all strains used (C57BL/6, CD4ko, and beta-microglobulin ko [beta 2Mko]), and following intraperitoneal injection, two disease processes could be distinguished. First, the virus caused early (3 to 7 days postinfection) death in a viral dose-dependent manner. Immunocompetent C57BL/6 mice were highly susceptible (50% lethal dose = 70 PFU), while immunodeficient transgenic ko mice were less susceptible, showing 10- and 180-fold increases in the 50% lethal dose (for CD4ko and beta 2Mko mice, respectively). Second, a histologic examination of surviving CD4ko mice at 7 days postinfection revealed severe myocarditis; the inflammatory infiltrate comprised 40 to 50% macrophages, 30 to 40% NK cells, and 10 to 20% CD8+ T lymphocytes. The infiltration resolved over the following 2 to 3 weeks, with resultant myocardial fibrosis. In vivo depletion of CD8+ T lymphocytes from these CD4ko mice led to a marked reduction in myocarditis and an increase in myocardial virus titers. beta 2Mko mice, which lack antiviral CD8+ T cells, are much less susceptible to early death and to the development of myocarditis. We conclude that our data support a strong immunopathologic component in CVB3-induced disease and implicate both CD4+ and CD8+ T cells. Compared with immunocompetent animals, (i) mice lacking CD4+ T cells (CD4ko) were more resistant to virus challenge, and (ii) mice lacking CD8+ T cells (beta 2Mko and in vivo-depleted CD4ko) showed enhanced survival and a reduced incidence of the later myocarditis. Nevertheless, the picture is complex, since (iii) removal of the CD4+ component, while protecting against early death, greatly magnified the severity of myocarditis, and (iv) removal of the CD8+ cells from CD4ko mice, although protecting against early death and later myocarditis, led to markedly increased virus titers in the heart. These data underscore the complex balance between the costs and benefits of effective antiviral immune responses.  相似文献   

9.
Zhang Y  Zhu H  Ye G  Huang C  Yang Y  Chen R  Yu Y  Cui X 《Life sciences》2006,78(17):1998-2005
Coxsackievirus B3 (CVB3) is a major pathogen for acute and chronic viral myocarditis. The aim of this study was to investigate the antiviral effects of sophoridine, an alkaloid extracted from Chinese medicinal herb, Sophora flavescens, against CVB3, and the underlying pharmacokinetics. First, we determined the antiviral effects of sophoridine against CVB3 in in vitro (primarily cultured myocardial cells), in vivo (BALB/c mice) and serum pharmacological experiments. Then, we determined the pharmacokinetic behavior in serum samples of SD rats after oral administration by HPLC. Finally, we determined the effects of sophoridine on the production of cytokines in a murine viral myocarditis model by measuring mRNA expression of some important cytokines in hearts of infected BALB/c mice by RT-PCR. We found that sophoridine exhibited obvious antiviral effects both in vitro and in vivo, and serum samples obtained from rats with oral administration of sophoridine reduced the virus titers in infected myocardial cells. The serum concentration profile correlated closely with antiviral activity profile. Moreover, sophoridine significantly enhanced mRNA expression of IL-10 and IFN-gamma, but decreased TNF-alpha mRNA expression. In conclusion, sophoridine possesses antiviral activities against CVB3, by regulating cytokine expression, and it is likely that sophoridine itself, not its metabolites, is mainly responsible for the antiviral activities. Therefore, sophoridine may represent a potential therapeutic agent for viral myocarditis.  相似文献   

10.
The Th17/interleukin (IL)-17 axis controls inflammation and might be important in the pathogenesis of experimental autoimmune myocarditis (EAM) and other autoimmune diseases. However, the mechanism underlying the increased Th17 cell response in coxsackievirus-induced myocarditis remains unclear. This study aimed to elucidate the regulatory mechanisms affected by blocking IL-17A responses in acute virus-induced myocarditis (AVMC) mice. The results showed that IL-17A and COX-2 proteins were significantly increased in the cardiac tissue of acute myocarditis, as were Th17 cells in the spleen. Using anti-mouse IL-17Ab to block IL-17A on day 7 of the viral myocarditis led to decreased expressions of cardiac tumor-necrosis factor alpha, IL-17A and transforming growth factor beta in AVMC mice compared to isotype control mice. COX-2 and prostaglandin E2 proteins were dramatically elevated, followed by marked reductions in CVB3 replication and myocardial injury. These results hint that the Th17/IL-17 axis is intimately associated with viral replication in acute myocarditis via induction of COX-2 and prostaglandin E2.  相似文献   

11.
Male Balb/c mice inoculated with a heart-adapted variant of Coxsackievirus, group B, type 3 (CVB3) develop severe myocarditis 7 days later. The lesions are characterized by mononuclear cell inflammation and myocyte necrosis. Infected T-lymphocyte-deficient mice show either minimal or no cardiac injury, although virus concentrations in the hearts of T-cell-deficient and -sufficient animals are similar. Adoptive transfer of 2 X 10(6) CVB3 immune Thy 1+ cells into CVB3-infected T-cell-deficient mice effectively restored myocarditis to levels observed in intact animals. Similar reconstitution with immune Ig+ cells or serum resulted in only a minimal increase in cardiac injury. To determine whether T-lymphocyte-dependent humoral or cellular immunity was responsible for myocarditis. T lymphocytes were obtained from Balb/c mice 6 days after infection with CVB3, separated into Lyt 1+2- (helper) and Lyt 1-2+ (cytolytic/suppressor) cell populations, and 2 X 10(6) of the enriched helper and cytolytic cells were adoptively transfused into infected T-cell-deficient recipients. Animals receiving the immune Lyt2+ cells developed severe myocarditis, had cytolytic T lymphocytes to both CVB3-infected and uninfected myocytes, but lacked a detectable IgG antibody response. Recipients of the Lyt 1+ cells failed to develop either myocarditis or cytolytic T cells but had normal serum IgG antibody titers to the virus. These results demonstrate that cardiac myocarditis is the product of cellular immune mechanisms.  相似文献   

12.
Two coxsackievirus B3 (CVB3) variants (H3 and H310A1) differ by a single amino acid mutation in the VP2 capsid protein. H3 induces severe myocarditis in BALB/c mice, but H310A1 is amyocarditic. Infection with H3, but not H310A1, preferentially activates Vgamma4 Vdelta4 cells, which are strongly positive for gamma interferon (IFN-gamma), whereas Vgamma1 Vdelta4 cells are increased in both H3 and H310A1 virus-infected animals. Depletion of Vgamma1(+) cells using monoclonal anti-Vgamma1 antibody enhanced myocarditis and CD4(+)-, IFN-gamma(+)-cell responses in both H3- and H310A1-infected mice yet decreased the CD4(+)-, IL-4(+)-cell response. Depleting Vgamma4(+) cells suppressed myocarditis and reduced CD4(+) IFN-gamma(+) cells but increased CD4(+) IL-4(+) T cells. The role of cytokine production by Vgamma1(+) and Vgamma4(+) T cells was investigated by adoptively transferring these cells isolated from H3-infected BALB/c Stat4 knockout (Stat4ko) (defective in IFN-gamma expression) or BALB/c Stat6ko (defective in IL-4 expression) mice into H3 virus-infected wild-type BALB/c recipients. Vgamma4 and Vgamma1(+) T cells from Stat4ko mice expressed IL-4 but no or minimal IFN-gamma, whereas these cell populations derived from Stat6ko mice expressed IFN-gamma but no IL-4. Stat4ko Vgamma1(+) cells (IL-4(+)) suppress myocarditis. Stat6ko Vgamma1(+) cells (IFN-gamma(+)) were not inhibitory. Stat6ko Vgamma4(+) cells (IFN-gamma(+)) significantly enhanced myocarditis. Stat4ko Vgamma4(+) cells (IL-4(+)) neither inhibited nor enhanced disease. These results show that distinct gammadelta-T-cell subsets control myocarditis susceptibility and bias the CD4(+)-Th-cell response. The cytokines produced by the Vgamma subpopulation have a significant influence on the CD4(+)-Th-cell phenotype.  相似文献   

13.
Cardiovascular disease is one of the leading causes of death worldwide, and has been associated with many environmental risk factors. Recent evidence has indicated the involvement of pathogens such as viruses as causative agents, and specifically identified the coxsackievirus B serogroup as the leading culprit. Not only has coxsackievirus B3 (CB3) been identified from patients with cardiovascular disease, but also infection of mice with CB3 strains can reproduce human clinical heart disease in rodents. Several mechanisms have been proposed in an attempt to distinguish between pathology mediated by direct viral destruction of cardiac muscle cells or by the virus-induced immune response directed at infected myocytes or at 'mimicked' epitopes shared between viral and cardiac antigens. To distinguish between these mechanisms, we infected a unique mouse that diminishes the extent of infection and spread of the virus, but allows complete immunity to the virus. Transgenic mice expressing interferon-gamma in their pancreatic beta cells failed to develop CB-3-induced myocarditis. This work challenges the idea of the function of the immune response and 'molecular mimicry' in the CB-3-induced autoimmune myocarditis model, and instead favors the idea of virus-mediated damage. These results emphasize the benefit of reducing the level of viremia early during infection, thereby reducing the incidence of virus-mediated heart damage and autoimmunity.  相似文献   

14.
Giving C57BL/6 mice 10(4) PFU of coxsackievirus B3 (H3 variant) fails to induce myocarditis, but increasing the initial virus inoculum to 10(5) or 10(6) PFU causes significant cardiac disease. Virus titers in the heart were equivalent at days 3 and 7 in mice given all three virus doses, but day 3 titers in the pancreases of mice inoculated with 10(4) PFU were reduced. Tumor necrosis factor alpha (TNF-alpha) concentrations in the heart were increased in all infected mice, but cytokine levels were highest in mice given the larger virus inocula. TNF-alpha(-/-) and p55 TNF receptor-negative (TNFR(-/-)) mice developed minimal myocarditis compared to B6;129 or C57BL/6 control mice. p75 TNFR(-/-) mice were as disease susceptible as C57BL/6 animals. No significant differences in virus titers in heart or pancreas were observed between the groups, but C57BL/6 and p75 TNFR(-/-) animals showed 10-fold more inflammatory cells in the heart than p55 TNFR(-/-) mice, and the cell population was comprised of high concentrations of CD4(+) gamma interferon-positive and Vgamma4(+) cells. Cardiac endothelial cells isolated from C57BL/6 and p75 TNFR(-/-) mice upregulate CD1d, the molecule recognized by Vgamma4(+) cells, but infection of TNF(-/-) or p55 TNFR(-/-) endothelial cells failed to upregulate CD1d. Infection of C57BL/6 endothelial cells with a nonmyocarditic coxsackievirus B3 variant, H310A1, which is a poor inducer of TNF-alpha, failed to elicit CD1d expression, but TNF-alpha treatment of H310A1-infected endothelial cells increased CD1d levels to those seen in H3-infected cells. TNF-alpha treatment of uninfected endothelial cells had only a modest effect on CD1d expression, suggesting that optimal CD1d upregulation requires both infection and TNF-alpha signaling.  相似文献   

15.
Coxsackievirus B3 infections of C57BL/6 mice, which express the MHC class II IA but not IE Ag, results in virus replication in the heart but minimal myocarditis. In contrast, Bl.Tg.Ealpha mice, which are C57BL/6 mice transgenically induced to express IE Ag, develop significant myocarditis upon Coxsackievirus B3 infection. Despite this difference in inflammatory damage, cardiac virus titers are similar between C57BL/6 and Bl.Tg.Ealpha mice. Removing gammadelta T cells from either strain by genetic manipulation (gammadelta knockout(ko)) changes the disease phenotype. C57BL/6 gammadelta ko mice show increased myocarditis. In contrast, Bl.Tg.Ealpha gammadelta ko mice show decreased cardiac inflammation. Flow cytometry revealed a difference in the gammadelta cell subsets in the two strains, with Vgamma1 dominating in C57BL/6 mice, and Vgamma4 predominating Bl.Tg.Ealpha mice. This suggests that these two Vgamma-defined subsets might have different functions. To test this possibility, we used mAb injection to deplete each subset. Mice depleted of Vgamma1 cells showed enhanced myocarditis, whereas those depleted of Vgamma4 cells suppressed myocarditis. Adoptively transfusing enriched Vgamma4(+) cells to the C57BL/6 and Bl.Tg. Ealpha gammadelta ko strains confirmed that the Vgamma4 subset promoted myocarditis. Th subset analysis suggests that Vgamma1(+) cells biased the CD4(+) T cells to a dominant Th2 cell response, whereas Vgamma4(+) cells biased CD4(+) T cells toward a dominant Th1 cell response.  相似文献   

16.
Coxsackieviruses are a cause of clinical myocarditis. Both virus replication and host defense mechanisms, including virus-induced autoimmunity, mediate heart injury and cardiac dysfunction. Vgamma4+ cells kill infected cardiocytes and virus-specific CD4+ Th2 cells through Fas-dependent apoptosis and CD1d. The CD4+ Th1 response is necessary for activation of the autoimmune CD8+ T cells, which kill uninfected cardiocytes through perforin-dependent mechanisms.  相似文献   

17.
Coxsackievirus B4 (CVB4)-induced production of alpha interferon (IFN-alpha) by peripheral blood mononuclear cells (PBMC) is enhanced in vitro by nonneutralizing anti-CVB4 antibodies from healthy subjects and, to a higher extent, from patients with insulin-dependent diabetes mellitus. In this study, we focused on identification of the viral target of these antibodies in CVB systems. High levels of IFN-alpha were obtained in supernatants of PBMC incubated with CVB4E2 or CVB3 and plasma from healthy subjects and, to a higher extent, from patients. The VP4 capsid proteins dissociated by heating at 56 degrees C from CVB4E2 (VP4(CVB4)) and CVB3 (VP4(CVB3)) but not H antigen preincubated with plasma from healthy subjects or patients inhibited the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis. There was no cross-reaction between VP4(CVB4) and VP4(CVB3) in the inhibiting effect. IFN-alpha levels in culture supernatants showed dose-dependent correlation with anti-VP4 antibodies eluted from plasma specimens using VP4-coated plates. There were higher index values for anti-VP4 antibodies detected by enzyme-linked immunosorbent assay (ELISA) and higher proportions of positive detection in 40 patients than in 40 healthy subjects (80% versus 15% for anti-VP4(CVB4)). There was no relationship between the levels of anti-CVB neutralizing antibodies and the detection of anti-VP4 antibodies by ELISA. The CVB plasma-induced IFN-alpha levels obtained in PBMC cultures in the anti-VP4 antibody-positive groups were significantly higher than those obtained in the anti-VP4 antibody-negative groups regardless of the titers of anti-CVB neutralizing antibodies. These results show that VP4 is the target of antibodies involved in the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis by PBMC.  相似文献   

18.
Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformational changes are essential for gating. Here we used voltage clamp fluorometry to investigate the roles of loops C and F in gating the α1 β2 γ2 GABA(A) receptor. Voltage clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. Previous attempts to define the roles of loops C and F using this technique have focused on homomeric Cys-loop receptors. However, the problem with studying homomeric receptors is that it is difficult to eliminate the possibility of bound ligands interacting directly with attached fluorophores at the same site. Here we show that ligands binding to the β2-α1 interface GABA binding site produce conformational changes at the adjacent subunit interface. This is most likely due to agonist-induced loop C closure directly altering loop F conformation at the adjacent α1-β2 subunit interface. However, as antagonists and agonists produce identical α1 subunit loop F conformational changes, these conformational changes appear unimportant for gating. Finally, we demonstrate that TM2-TM3 loops from adjacent β2 subunits in α1 β2 receptors can dimerize via K24'C disulfides in the closed state. This result implies unexpected conformational mobility in this crucial part of the gating machinery. Together, this information provides new insights into the activation mechanisms of Cys-loop receptors.  相似文献   

19.
Th1-type immune responses, mediated by IL-12-induced IFN-gamma, are believed to exacerbate certain autoimmune diseases. We recently found that signaling via IL-12Rbeta1 increases coxsackievirus B3 (CVB3)-induced myocarditis. In this study, we examined the role of IL-12 on the development of CVB3-induced myocarditis using mice deficient in IL-12p35 that lack IL-12p70. We found that IL-12 deficiency did not prevent myocarditis, but viral replication was significantly increased. Although there were no changes in the total percentage of inflammatory cells in IL-12-deficient hearts compared with wild-type BALB/c controls by FACS analysis, macrophage and neutrophil populations were decreased. This decrease corresponded to reduced TNF-alpha and IFN-gamma levels in the heart, suggesting that macrophage and/or neutrophil populations may be a primary source of TNF-alpha and IFN-gamma during acute CVB3 myocarditis. Increased viral replication in IL-12-deficient mice was not mediated by reduced TNFRp55 signaling, because viral replication was unaltered in TNFRp55-deficient mice. However, STAT4 or IFN-gamma deficiency resulted in significantly increased viral replication and significantly reduced TNF-alpha and IFN-gamma levels in the heart, similar to IL-12 deficiency, indicating that the IL-12/STAT4 pathway of IFN-gamma production is important in limiting CVB3 replication. Furthermore, STAT4 or IFN-gamma deficiency also increased chronic CVB3 myocarditis, indicating that therapeutic strategies aimed at reducing Th1-mediated autoimmune diseases may exacerbate common viral infections such as CVB3 and increase chronic inflammatory heart disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号