首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prospects for exosomes in immunotherapy of cancer   总被引:8,自引:0,他引:8  
Exosomes are nanometer sized membrane vesicles invaginating from multivesicular bodies and secreted from epithelial and hematopoietic cells. They were first described "in vitro" but vesicles with the hallmarks of exosomes are present in vivo in germinal centers and biological fluids. Their protein and lipid composition are unique and could account for their expanding functions such as eradication of obsolete proteins, antigen presentation or "Trojan horses" for viruses or prions. Exosome secretion could be a regulated process participating in the transfer of molecules inbetween immune cells. Despite numerous questions pertaining to their biological relevance, the potential of dendritic cell derived-exosomes as cell-free cancer vaccines is currently being assessed. This review will summarize the composition and formation of exosomes, preclinical data, Phase I trials and optimization protocols for improving their immunogenicity in tumor bearing patients.  相似文献   

2.
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.  相似文献   

3.
《Cell Stem Cell》2021,28(12):2062-2075.e5
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

4.
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.  相似文献   

5.
6.
7.
树突状细胞(dendritc cells,DC)是一种抗原提呈细胞,能特异地引发和调控机体免疫。它具有抗原呈现功能而不损害免疫系统,不仅能够激活CD4^ 辅助T细胞和CD8^ 细胞毒性T细胞,还能活化B细胞和自然杀伤细胞。已有的研究让人们看到了癌症疫苗的希望,但还处于早期阶段,有许多尚未确定的因素。因此有关DC疫苗用于对肿瘤的保护性和治疗性免疫还有待于进一步的研究。  相似文献   

8.
Dendritic cells for specific cancer immunotherapy   总被引:8,自引:0,他引:8  
The characterization of tumor-associated antigens recognized by human T lymphocytes in a major histocompatibility complex (MHC)-restricted fashion has opened new possibilities for immunotherapeutic approaches to the treatment of human cancers. Dendritic cells (DC) are professional antigen presenting cells that are well suited to activate T cells toward various antigens, such as tumor-associated antigens, due to their potent costimulatory activity. The availability of large numbers of DC, generated either from hematopoietic progenitor cells or monocytes in vitro or isolated from peripheral blood, has profoundly changed pre-clinical research as well as the clinical evaluation of these cells. Accordingly, appropriately pulsed or transfected DC may be used for vaccination in the field of infectious diseases or tumor immunotherapy to induce antigen-specific T cell responses. These observations led to pilot clinical trials of DC vaccination for patients with cancer in order to investigate the feasibility, safety, as well as the immunologic and clinical effects of this approach. Initial clinical studies of human DC vaccines are generating encouraging preliminary results demonstrating induction of tumor-specific immune responses and tumor regression. Nevertheless, much work is still needed to address several variables that are critical for optimizing this approach and to determine the role of DC-based vaccines in tumor immunotherapy.  相似文献   

9.
Prospects for the use of nuclear transfer in human transplantation   总被引:11,自引:0,他引:11  
The successful application of nuclear transfer techniques to a range of mammalian species has brought the possibility of human therapeutic cloning significantly closer. The objective of therapeutic cloning is to produce pluripotent stem cells that carry the nuclear genome of the patient and then induce them to differentiate into replacement cells, such as cardiomyocytes to replace damaged heart tissue or insulin-producing beta cells for patients with diabetes. Although cloning would eliminate the critical problem of immune incompatibility, there is also the task of reconstituting the cells into more complex tissues and organs in vitro. In the review, we discuss recent progress that has been made in this field as well as the inherent dangers and scientific challenges that remain before these techniques can be used to harness genetically matched cells and tissues for human transplantation.  相似文献   

10.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

11.
NK cells and cancer   总被引:5,自引:0,他引:5  
In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.  相似文献   

12.
Development of new effective method for cancer therapy is one of the most important trends in the modern medicine. Along with surgery, chemotherapy and radiotherapy, induction of an immune response against the tumor cells is a promising approach for therapy of cancer, particularly metastatic, slowly dividing tumors and cancer stem cells. Induction of the antitumor T-cell immune response involves activation of antigen-presenting cells, which can efficiently present the cancer antigens and activate T-lymphocytes. The immune response may be activated by dendritic cells (DC) loaded with tumor antigens, such as tumor-specific proteins, tumor cell lysates, apoptotic or necrotic tumor cells, as well as nucleic acids encoding tumor antigens. Regardless of the selected source of the tumor antigen, preparation of mature DC is a principal step in the development of anticancer vaccines aimed at the induction of the cytotoxic T-cell immune response. Recently, various research groups have proposed several strategies for producing mature DC, differed by the set of agents used. It has been shown that the maturation strategy influences both their phenotype and the ability to induce the immune response. In this review we have analyzed the results of studies on the various strategies of preparation of mature DCs.  相似文献   

13.
Dendritic cell (DC) immunotherapy is capable of generating tumour‐specific immune responses. Different maturation strategies were previously tested to obtain DC capable of anti‐cancer responses in vitro, usually with limited clinical benefit. Mutual comparison of currently used maturation strategies and subsequent complex evaluation of DC functions and their stimulatory capacity on T cells was performed in this study to optimize the DC vaccination strategy for further clinical application. DC were generated from monocytes using granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and interleukin (IL)‐4, pulsed with whole tumour cell lysate and then matured with one of five selected maturation strategies or cultured without additional maturation stimulus. DC were characterized with regard to their surface marker expression, cytokine profiles, migratory capacity, allogeneic and autologous T cell stimulatory capacity as well as their specific cytotoxicity against tumour antigens. We were able to demonstrate extensive variability among different maturation strategies currently used in DC immunotherapeutic protocols that may at least partially explain limited clinical benefit of some clinical trials with such DC. We identified DC matured with interferon‐γ and lipopolysaccharide as the most attractive candidate for future clinical trials in cancer immunotherapy.  相似文献   

14.
15.
Prospects for specific immunotherapy in myasthenia gravis   总被引:1,自引:0,他引:1  
Myasthenia gravis is an autoimmune disease resulting from a breakdown in T and B cell tolerance to acetylcholine receptor (AChR). Autoantibodies to AChR mediate the disease. Recent advances in experimental immunotherapy of autoimmune disease provide several possibilities for specific intervention in this well-characterized condition.  相似文献   

16.
正Cancer immunotherapy refers to harnessing the body’s immune system to fight cancer. Cancer immunotherapy has been the hotspot for oncotherapy research since the late 19th century when Dr. Williams Coley used mixed bacteria to boost the body’s immune response to fight cancer. With the rapid development of biotechnology and an increase in the understanding of the body’s immune system, cancer immunotherapy has attracted increased research focus because of its benefits in cancer patients and is considered a leading breakthrough since 2013.  相似文献   

17.
Allogeneic bone marrow transplantation (BMT) has been increasingly used for the treatment of both neoplastic and non-neoplastic disorders. However, serious obstacles currently limit the efficacy and thus more extensive use of BMT. These obstacles include: graft-versus-host disease (GVHD), relapse from the original tumor, and susceptibility of patients to opportunistic infections due to the immunosuppressive effects of the conditioning regimen.Overcoming these obstacles is complicated by dual outcome of existing regimens; attempts to reduce GVHD by depleting T cells from the graft, result in increased rates of tumor relapse and failure of engraftment. On the other hand, efforts to increase graft-versus-tumor (GVT) effects of the transplant also promote GVHD. In this review, the use of natural killer (NK) cells to overcome some of these obstacles of allogeneic BMT is evaluated. Adoptive immunotherapy using NK cells after allogeneic BMT has several potential advantages. First, NK cells can promote hematopoiesis and therefore engraftment by production of hematopoietic growth factors. Second, NK cells have been shown to prevent the incidence and severity of GVHD. This has been shown to be at least partially due to TGF-beta, an immunosuppressive cytokine. Third, NK cells have been shown to augment numerous anti-tumor effects in animals after BMT suggesting a vital role of NK cells in mediating GVT effects. Finally, NK cells have been demonstrated to affect B cell recovery and function in mice. Therefore, understanding the mechanisms of beneficial effects of NK cells after BMT may lead to significant increases in the efficacy of this procedure.  相似文献   

18.
19.
《Molecular medicine today》1998,4(11):494-504
Prostate cancer is the most common neoplasm in men and a significant cause of mortality in affected patients. Despite significant advances, current methods of treatment are effective only in the absence of metastatic disease. Gene therapy offers a renewed hope of using the differential characteristics of normal and malignant tissue in constructing treatment strategies. Several clinical trials in prostate cancer gene therapy are currently under way, using immunomodulatory genes, anti-oncogenes, tumor suppressor genes and suicide genes. A continued understanding of the etiological mechanisms involved in the establishment and progression of prostate cancer, along with advances in gene therapy technology, should make gene therapy for prostate cancer therapeutically valuable in the future.  相似文献   

20.
Dendritic cell-based vaccines are being evaluated in clinical trials to determine their ability to activate clinically relevant tumor antigen-specific immune responses. Although some groups isolate dendritic cells from peripheral blood, most have found it more efficient to generate large numbers from peripheral blood progenitors, particularly plastic adherent or CD14+ monocytes, in media supplemented with GM-CSF and IL-4. These DC may then be matured, if desired, and loaded with antigen, such as tumor-associated peptides, prior to administration. We describe the scheme that we are currently using to generate peptide-loaded dendritic cells for our clinical trials of cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号