首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the change of the center of pressure (COP) after forward platform translations in healthy subjects. These studies were performed on 26 normal young subjects and 20 healthy elderly subjects, who had a normal neurologic examination. Subjects stood barefoot on a three dimensional force plate on the platform, with feet parallel. The duration of the forward platform translations was 0.15 s, and the displacements were 3.75, 7.5, 10, 15, 20, and 30 mm. Six trials were carried out at random. The COP data were recorded for 35 s during standing, and were analyzed for 5 s after translation. With the platform translation displacements from 3.75 to 15 mm, displacement of the COP showed a tendency to increase in all subjects. Whereas with the stimuli between 20 and 30 mm, the results were more varied. The elderly group showed significantly (p<0.05) larger sway than the young group. These results indicate that the individual ability of posture control may be assessed by means of measuring the sway of the center of gravity after platform translation. Electromyography was carried out simultaneously, it showed that elderly people contrary to young subjects used proximal biceps femoris and distal foot muscles at an early stage of the platform translation (p<0.05), suggesting lack of ankle stability with aging.  相似文献   

2.
To this day, many studies have suggested that prolonged bed rest (BR) affects on muscle mass and strength not only in gravity muscles but also in ungravity muscles. However, it is still unclear whether the decrease in regional muscle strength after BR is due to the alterations in the corresponding muscle mass, or not. On the other hand, if BR decreases the mass of antigravity muscles (UGM) as well as muscle strength and then increases tissue compliance of the antigravity muscles, orthostatic tolerance capacity will be decreased by the reduction in cardiac output (CO) in spite of the increase in myocardial contractility because the more decrease in venous return due to the more increase in blood pooling within the compliant tissues of the lower body. However, this is also unclear. To make these questions clear, the present study investigated the regional muscle mass and strength and orthostatic tolerance capacity before and after 20 days of bed rest in young subjects.  相似文献   

3.
Inspiratory muscles training in COPD is controversial not only in relation to the load level required to produce muscular conditioning effects but also in relation to the group of patients benefiting from the training. Consequently, inspiratory muscular response assessment during Threshold® therapy may help optimizing training strategy. The objective of this study was to evaluate the participation of the diaphragm and the sternocleidomastoid (SMM) muscle to overcome with a 30% Threshold® load using surface electromyography (sEMG) and to analyze the correlation between SMM activation, maximum strength level of inspiratory muscles (MIP) and obstruction degree in COPD patients (FEV1). We studied seven healthy elderly subjects, mean age of 68 ± 4 years and seven COPD patients, FEV1 45 ± 17% of the predicted value, with mean age 66 ± 8 years. sEMG analysis of SMM muscles and diaphragm were obtained through RMS (root-mean-square) during three stages: pre-loading, loading and post-loading.

Results

In the COPD group, the RMS of the SMM increased 28% during load (p < 0.05) while the RMS of the diaphragm remained constant. In the elderly there was a trend of a 11% increase in diaphragm activity and of 7% in SMM activity but, without reaching significance levels. SMM activity demonstrated good correlation with the obstruction level (r = −0.537).

Conclusion

To overcome the load required by Threshold® therapy, COPD patients demonstrated an increase of accessory muscles activity, represented by SMM. For the same relative load this increase seems to be proportional to the degree of pulmonary obstruction.  相似文献   


4.
This study examined the relationship between onset latencies estimates from EMG and center of pressure (COP) in young (five female, five male; mean=24.2+/-2.3 years) and older (six female, four male; 78.4+/-2.3 years) subjects during anterior or posterior platform translations. The latencies to onset of activity were estimated for the tibialis anterior (TA; mean=119.8 ms across both age groups) and COP (mean=139.7 ms across both groups) for anterior translations, and the soleus (SOL; mean=122.4 ms across both groups), gastrocnemius (GAS; mean=126.0 ms for young, and 115.9 ms for old subjects) and COP (mean=160.0 ms across both groups) for posterior translations. Average within-subject correlations (r') among these measures showed a high correlation between TA and COP onset latency (r'=0.667, young; r'=0.482, old), and relatively low correlations between the plantar flexors (SOL and GAS) and COP onset latencies (SOL: r'=0.292 for young, r'=0.249 for old; GAS: r'=0.126 for young, r'=0.143 for old). The SOL and GAS onset latencies correlated well with each other, especially in the older subjects (r'=0.762), suggesting that the contribution of two muscles creates some variability in the relationship with COP onset latency. The strong correlation between TA and COP for anterior perturbations, coupled with the weaker correlations for the plantar flexors suggest that the COP method may be preferable for studies interested in determining timing of postural responses to multidirectional perturbations.  相似文献   

5.
6.
Muscle- and movement-specific fascicle-tendon interaction affects the performance of the neuromuscular system. This interaction is unknown among elderly and consequently contributes to the lack of understanding the age-related problems on neuromuscular control. The present experiment studied the age specificity of fascicle-tendon interaction of the gastrocnemius medialis (GM) muscle in drop jump (DJ) exercises. Twelve young and thirteen elderly subjects performed maximal squat jumps and DJs with maximal rebound effort on a sledge apparatus. Ankle and knee joint angles, reaction force, and electromyography (EMG) from the soleus (Sol), GM, and tibialis anterior (TA) muscles were measured together with the GM fascicle length by ultrasonography. The results showed that the measured ankle joint stiffness (AJS) during the braking phase correlated positively with the rebound speed in both age groups and that both parameters were significantly lower in the elderly than in young subjects. In both groups, the AJS correlated positively with averaged EMG (aEMG) in Sol during the braking phase and was further associated with GM activation (r = 0.55, P < 0.01) and TA coactivation (TA/GM r = -0.4 P < 0.05) in the elderly subjects. In addition, compared with the young subjects, the elderly subjects showed significantly lower GM aEMG in the braking phase and higher aEMG in the push-off phase, indicating less utilization of tendinous tissue (TT) elasticity. These different activation patterns are in line with the mechanical behavior of GM showing significantly less fascicle shortening and relative TT stretching in the braking phase in the elderly than in the young subjects. These results suggest that age-specific muscle activation patterns as well as mechanical behaviors exist during DJs.  相似文献   

7.
We have previously reported that elderly compared to young women executed downward stepping with substantially greater leg stiffness. Because antagonist muscle coactivity increases joint stiffness we hypothesized that increased leg stiffness in aging is associated with increased muscle coactivity. We also explored the possibility that the magnitude of the preparatory muscle activity preceding impact also differed between young and old subjects. Young (n=11, 20. 8 yr) and old (n=12, 69 yr) women performed downward stepping from a platform set at 20% body height. The leg was modeled as a simple mass-spring system. From video and ground reaction force data leg stiffness was computed as the ratio of force under the foot and the linear shortening of the limb. EMG activity of the vastus lateralis, biceps femoris, gastrocnemius lateralis, and tibialis anterior were recorded with a telemetric system. Elders compared to young subjects had 64% greater leg stiffness during downward stepping. Muscle activity over a 200-ms period preceding touch down was 136% greater in elderly than in young subjects. Biceps femoris and tibialis anterior coactivity during ground contact was 120% greater in the elders. Muscle pre- and coactivity, respectively, accounted for about 50% of the variance in leg stiffness. In conclusion, elderly people elevate muscle pre- and coactivity during downward stepping to stiffen the leg in compensation for impaired neuromotor functions.  相似文献   

8.
Accidental falls are a leading cause of injury and death in the growing elderly population. Traumatic falls are frequent, costly, and debilitating. Control of balance during locomotion is critical for safe ambulation, but relatively little is known about the natural effect of aging on dynamic balance control. Samples of healthy young (n = 13) and elderly (n = 13) subjects were compared in the interactive measures of center of mass (COM) and center of pressure (COP) during level walking and obstacle crossing conditions. Obstacle heights were normalized to individual body height (2.5%, 5%, 10%, and 15%). Temporal-distance (T-D) variables of gait were also compared. Statistical analyses were conducted using a two-way ANOVA for subject group and obstacle height. T-D parameters were not significantly different between groups; nor were frontal plane COM and COP parameters. Significant age differences did exist for antero-posterior (A/P) motion of the COM (decreased motion in the elderly), and its relationship with the COP (reduced separation between the two variables in the elderly). Anterior COM velocities were also significantly lower in the elderly group. The results confirm the ability of healthy elderly adults to maintain dynamic balance control in the frontal plane during locomotion. Reduced A/P distances between the COM and COP indicate a conservative reduction of the mechanical load on joints of the supporting limb. This conservative strategy may be related to a reduction in muscle strength as it occurs in the natural aging process.  相似文献   

9.
The dynamic of the parameters of lung ventilation and gas exchange have been studied in 10 young male subjects during involuntary stepping movements induced by transcutaneous spinal cord electrical stimulation applied in the projection of T 11T 12 vertebrae and during voluntary stepping movements. It has been found that the transcutaneous spinal cord stimulation inducing stepping movements leads to an increase in breathing frequency and a reduction in tidal volume. These effects may be mediated by some neurogenic factors associated with muscular activity during stepping movements, the activation of abdominal expiratory muscles, and the interaction between the stepping pattern and breathing generators.  相似文献   

10.
While several studies have examined kinematic and kinetic differences between maximalist (MAX), traditional (TRAD), or partial minimalist (PMIN) shoes, to date it is unknown how MAX shoes influence muscle activity. This study compared lower extremity kinematics and muscle activity when running in PMIN, TRAD, and MAX shoes. Thirteen participants ran in each shoe while whole body kinematics were recorded using motion capture and electromyography was recorded from seven leg muscles. Differences in kinematics and root mean square amplitudes (RMS) were compared between shoe conditions. There were small differences in sagittal and frontal plane ankle kinematics between shoe conditions, with the MAX shoes resulting in less dorsiflexion at foot strike (p = .002) and less peak dorsiflexion (p < .001), and the PMIN shoes resulting in greater peak eversion (p = .012). Gluteus medius (p.006) and peroneus longus (p = .007) RMS amplitudes were greater in the MAX shoe then the TRAD or PMIN shoes while tibialis anterior RMS amplitudes were higher in the PMIN shoes (p = .005) than either the TRAD or MAX shoes. Consistent with previous findings, these results suggest there are small differences in kinematics when running in these three shoe types. This may partly be explained by the changes in muscle activity, which may be a response in order to maintain a preferred or habitual movement path. Implications for these difference in muscle activity in terms of fatigue or injury remain to be determined.  相似文献   

11.
The purpose of this study was to investigate knee muscle activity patterns in experienced Tai-Chi (TC) practitioners during normal walking and TC stepping. The electromyographic (EMG) activity of vastus lateralis (VL), vastus medialis (VM), bicep femoris (BF), and gastrocnemius (GS) muscles of 11 subjects (five females and six males) during the stance phase of normal walking was compared to stance phase of a TC step. Knee joint motion was also monitored by using an Optotrak motion analysis system. Raw EMG was processed by root-mean-square (RMS) technique using a time constant of 50 ms, and normalized to maximum of voluntary contraction for each muscle, referred to as normalized RMS (nRMS). Peak nRMS and co-contraction (quantified by co-contraction index) during stance phase of a gait cycle and a TC step were calculated. Paired t-tests were used to compare the difference for each muscle group peak and co-contraction pair between the tasks. The results showed that only peak values of nRMS in quadriceps and co-contraction were significantly greater in TC stepping compared to normal walking (Peak values of nRMS for VL were 26.93% for normal walking and 52.14% for TC step, p=0.001; VM are 29.12% for normal walking and 51.93% for TC stepping, p=0.028). Mean co-contraction index for VL-BF muscle pairs was 13.24+/-11.02% during TC stepping and 9.47+/-7.77% in stance phase of normal walking (p=0.023). There was no significant difference in peak values of nRMS in the other two muscles during TC stepping compared to normal walking. Preliminary EMG profiles in this study demonstrated that experienced TC practitioners used relatively higher levels of knee muscle activation patterns with greater co-contraction during TC exercise compared to normal walking.  相似文献   

12.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

13.
This study aimed to examine the relationships among various stepping parameters, sex, and age in the elderly. Healthy elderly Japanese individuals 60-85 years old (50 males and 61 females) performed 4 types of stepping motions for 20 s. Stepping motions included bilateral stepping (back/forth and right/left) and unilateral stepping (back/forth and right/left). The number of steps, the average connecting time of a foot during one step, and the average time of both feet touching the floor at the same time (bilateral connecting time) were measured with a foot switch sheet. The trial-to-trial reliability was very high (above 0.86) except for the bilateral connecting time in the bilateral stepping back/forth test for 70-85 year olds (males: 0.67, females: 0.68). With age, the number of steps was significantly smaller, and the average connecting time and the bilateral connecting time were shorter in all stepping tests. There were significant sex differences in bilateral connecting time for bilateral stepping right and left and the number of steps for the bilateral stepping back and forth and the unilateral stepping right and left tests. The number of steps and average connecting time showed high correlations between bilateral stepping right/left and back/forth (r=0.71-0.94) and between unilateral stepping back/forth and right/left (r=0.87-0.99). There were significant correlations of the average connecting time between bilateral and unilateral stepping motions (r=0.51-0.83), but both stepping motions are considered to have different motion properties from the viewpoint of center of gravity sway. The correlations between the bilateral connecting time and the number of steps in bilateral stepping were relatively low (males: /r/<0.70, females: /r/<0.57). The bilateral connecting time was near 0 s in many males; thus, it may depend greatly on individual or sex differences in stepping strategy. These results suggest that the stepping motions used in this study can evaluate dynamic balance ability, and that the unilateral test may be useful for the elderly who cannot walk independently with ease.  相似文献   

14.
Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; p<0.05), while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects'' COP measures from the young adult cohort were weighted to establish a balance score (“B-score”) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly “non-fallers” had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001). A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention.  相似文献   

15.
The concentric and eccentric strength profile and muscular balance of the hip joint are important parameters for success in soccer. This study evaluated the reliability for the assessment of hip abduction and adduction isokinetic strength over a range of angular velocities (30 and 90°/s) and types of muscular actions (concentric and eccentric) in young soccer players. The reliability for the assessment of reciprocal (conventional and functional) and bilateral torque ratios was also examined. Fifteen male soccer players (15±1 years) performed two sessions, separated by three days. The testing protocol consisted of five maximal concentric and eccentric hip abductions and adductions of both legs at angular velocities of 30°/s and 90°/s. The peak torque was evaluated in young soccer players using an isokinetic dynamometer (Cybex Norm), and the reciprocal strength ratios (conventional and functional) and bilateral ratios (non-preferred to preferred leg ratios) were calculated. The test-retest reliability for the assessment of peak torque (ICC = 0.71-0.92) and of reciprocal muscle group ratios (ICC = 0.44-0.87) was found to be moderate to high. Bilateral torque ratios exhibited low to moderate reliability (ICC = 0.11-0.64). In conclusion, isokinetic strength of hip abductor and adductor muscles and the conventional and functional strength ratios can be reliably assessed in young soccer players, especially at low angular velocities. The assessment, however, of bilateral strength ratios for hip abductor/adductor muscles should be interpreted with more caution.  相似文献   

16.
The extents to which decreased muscle size or activation are responsible for the decrease in strength commonly observed with aging remain unclear. Our purpose was to compare muscle isometric strength [maximum voluntary contraction (MVC)], cross-sectional area (CSA), specific strength (MVC/CSA), and voluntary activation in the ankle dorsiflexor muscles of 24 young (32 +/- 1 yr) and 24 elderly (72 +/- 1 yr) healthy men and women of similar physical activity level. Three measures of voluntary muscle activation were used: the central activation ratio [MVC/(MVC + superimposed force)], the maximal rate of voluntary isometric force development, and foot tap speed. Men had higher MVC and CSA than did women. Young men had higher MVC compared with elderly men [262 +/- 19 (SE) vs. 197 +/- 22 N, respectively], whereas MVC was similar in young and elderly women (136 +/- 15 vs. 149 +/- 16 N, respectively). CSA was greater in young compared with elderly subjects. There was no age-related impairment of specific strength, central activation ratio, or the rate of voluntary force development. Foot tap speed was reduced in elderly (34 +/- 1 taps/10 s) compared with young subjects (47 +/- 1 taps/10 s). These results suggest that isometric specific strength and the ability to fully and rapidly activate the dorsiflexor muscles during a single isometric contraction were unimpaired by aging. However, there was an age-related deficit in the ability to perform rapid repetitive dynamic contractions.  相似文献   

17.
The vertical jump is a widely used activity to develop explosive strength, particularly in plyometric and maximal power training programs. It is a multijoint action that requires substantial muscular effort from primarily the ankle, knee, and hip joints. It is not known if submaximal performances of a vertical jump have a proportional or differential training effect on the major lower-limb muscles compared to maximal jump performance. Therefore, the purpose of this study was to investigate the contribution that each of the major lower-limb joints makes to vertical jump performance as jump height increases and to comment on the previously mentioned uncertainty. Adult males (N = 20) were asked to perform a series of submaximal (LOW and HIGH) and maximal (MAX) vertical jumps while using an arm swing. Force, motion, and electromyographical data were recorded during each performance and used to compute a range of kinematic and kinetic data, including ankle, knee, and hip joint torques, powers, and work done. It was found that the contribution to jump height made by the ankle and knee joints remains largely unchanged as jump height increases (work done at the ankle: LOW =1.80, HIGH = 1.97, MAX = 2.06 J.kg(-1), F = 3.596, p = 0.034; knee: LOW = 1.62, HIGH = 1.77, MAX = 1.94 J.kg(-1), F = 1.492, p = 0.234) and that superior performance in the vertical jump is achieved by a greater effort of the hip extensor muscles (work done at the hip: LOW = 1.03, HIGH = 1.84, MAX = 3.24 J.kg(-1), F = 110.143, p < 0.001). It was concluded that the role of submaximal and maximal jumps can be differentiated in terms of their effect on ankle, knee, and hip joint muscles and may be of some importance to training regimens in which these muscles need to be differentially trained.  相似文献   

18.
The purposes of this study were: (1) to determine the frequency of protective stepping for balance recovery in subjects of different ages and fall-status, and (2) to compare predicted stepping based on a dynamic model (Pai and Patton, 1997. Journal of Biomechanics 30, 347–354) involving displacement and velocity combinations of the center of mass (COM) versus a static model based on displacement alone against experimentally induced stepping. Responses to three different magnitudes of forward waist pulls were recorded for 13 young, 18 older-non-fallers and 18 older-fallers. The COM phase plane trajectories derived from motion analysis were compared with the model-predicted threshold values for stepping. We found that the older fallers had the highest percentage of stepping trials (52%), followed by older-non-fallers (17.3%), and young (2.7%) at the lowest perturbation level. Younger subjects stepped less often than the elderly at the middle level. Everyone consistently stepped at the highest level of perturbation. Overall, the dynamic model showed better predictive capacity (65%) than the static model (5%) for estimating the initiation of stepping. Furthermore, the threshold for step initiation derived from the dynamic model could consistently predict when a step must occur. However, it was limited, especially among older fallers at the low perturbation level, in that it considered some steps ‘unnecessary’ that were presumably triggered by fear of falling or other factors.  相似文献   

19.
The recovery of young adults from trips of increasing severity was studied. Our null hypothesis was that lower extremity strength, and reaction time, step time, step distance and step velocity measured in a volitional stepping task would not explain a significant portion of the variance in the magnitude of the threshold trip duration for which recovery is no longer possible. Ten males and 11 females (average age 26.8 and 28.4 years old, respectively) were subjected to trips of increasing duration until recovery was no longer possible with a single step. The average threshold trip duration for which subjects were no longer able to recover with a single step was 681+/-169ms. The threshold trip duration significantly increased as lower extremity strength increased and volitional reaction time decreased (multiple stepwise linear regression: R(2)=0.52, p=0.001). The other volitional step parameters and the subject characteristics were not significantly associated with the magnitude of the threshold trip duration. These results suggest that some trip-related falls may be due to slower reaction times and/or reduced lower extremity strengths.  相似文献   

20.
ObjectiveTo provide normative postural stability data in young subjects.MethodsNinety-six healthy participants (58 W, 28 ± 6y) stood on a force plate during 60 s. We measured effects of support width (feet apart, FA; feet together, FT), vision (eyes open, EO; closed, EC), and cognitive load (single task, ST; dual tasking, DT) on anteroposterior (AP) and medio-lateral (ML) ranges, area and planar velocity of center of pressure (COP) trajectory.ResultsAll variables increased with FT (AP range, +15%; ML, +185%; area, +242%; velocity, +50%, p < 0.0002 for all, MANOVA). Visual deprivation increased COP ranges with added constraints (FT or DT, p = 0.002) and increased velocity in all conditions (FA/ST, +16%; DT, +18%; FT/ST, +29%; DT, +23%, p < 0.0002 for all). Dual tasking reduced COP displacements with FT (AP range, EO, −15%; EC, −11%; ML range, EO, −19%; EC, −13%; area, EO, −40%; EC, −28%, p < 0.0002 for all) and increased velocity in most conditions (FA/EO, +15%; FA/EC, +16%; FT/EO, +7%, p < 0.0002 for all).ConclusionIn young healthy adults, base of support reduction increases COP displacements. Vision particularly affects postural stability with feet together or dual tasking. Dual tasking increases velocity but decreases COP displacements in challenging postural tasks, potentially by enhanced lower limb stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号