首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hormonal imprinting develops perinatally at the first encounter between the maturing receptor and the target hormone, helping the normal accomplishment of receptor maturation. In the presence of hormone excess or foreign molecules able to bind to the maturing receptor, faulty imprinting takes place, which disturbs the normal receptor function for life. Earlier experiments demonstrated that the effect of faulty perinatal benzpyrene imprinting of the steroid hormone receptors is transmitted to the progeny generations. In certain organs which are maturing later (such as the uterus) imprinting can be executed at adolescence. In the present experiments pubertal benzpyrene imprinting caused a durable decrease in female's estrogen receptor density. The transgenerational effect of this type of imprinting was also studied. The pubertal imprinting of the parents was transgenerationally transmitted to the offspring generation in which--without further treatment--the density (Bmax) of the uterine estrogen receptors was significantly higher than that in the controls. There were measurable effects neither in the affinity (Kd) of uterine estrogen receptors nor in the Kd and Bmax of the male thymus glucocorticoid receptors. The experiments call attention to the profound and comprehensive imprinting effect of the environmental pollutant benzpyrene.  相似文献   

2.
Hormonal imprinting takes place perinatally, at the first encounter between the target hormone and its developing receptor. However, there is a secondary critical period of imprinting at puberty. In these periods molecules similar to the hormones (members of the same hormone family, antagonists, certain environmental pollutants, etc.) can cause faulty imprinting with lifelong consequences. In the present experiments 5+2 days of tamoxifen treatment (120 microg/day) at adolescent age dramatically (from approx. 40% to 10%) reduced the sexual activity (Meyerson index and lordosis quotient) of female rats, soon after the finishment of the treatment and between four to six weeks after treatment. Similar results were observed in animals neonatally treated with allylestrenol and tamoxifen treated at puberty. Thymic glucocorticoid receptor and uterine estrogen receptor binding capacity were not influenced.  相似文献   

3.
激素印迹是单细胞动物和多细胞动物的一种生理现象,也是选择参与信号识别过程分子的工具。激素印迹后,受体记忆将遗传给子孙后代,因此其对进化的作用可能是很大的。同时,激素印迹还有利于物种的维持。另外,激素印迹过程还是具有终身效应的临时开放系统的一部分。没有印迹,就没有完全的受体成熟,而不成熟的受体是不能和适量的激素结合的。在围 期诸如治疗药物和环境污染剂等人工合成的物质分子易致错误或病理印迹。许多研究表明错误印迹对生物体具有重要的影响。当然,单细胞动物的激素印迹过程与多细胞动物并不完全一样。  相似文献   

4.
Hormonal imprinting takes place perinatally at the first encounter between the developing receptor and its target hormone. As a consequence of imprinting the receptor accomplishes its maturation and reaches the binding capacity characteristic to the adult age. In the excess of target hormone or presence of molecules similar to the target hormone, which are able to bind to the unmatured receptors, faulty imprinting develops with life-long consequences. At present, serotonin was given to neonatal rats and their sexual activity, brain serotonin level and steroid receptor's binding capacity was measured in adult age. Brain serotonin level was significantly reduced in male's striatum and parallel with this, male's sexual activity significantly increased. In other regions of the male brain (prefrontal cortex, hypothalamus, hippocampus) there was a statistically non-significant tendency for a decrease in serotonin level. No significant differences were detected in female brain values, and there was only slight change in female's sexual activity. There was also no change in the binding capacity of thymic glucocorticoid and uterine estrogen receptors. The experiments call attention to the possibility of perinatal imprinting by a neurotransmitter causing changes in brain neurotransmitter level for life, which is manifested in altered sexual activity.  相似文献   

5.
Hormonal imprinting develops during the perinatal critical period, when the target hormone meets the yet unmatured receptor. As a consequence of imprinting the receptor accomplishes its maturation reaching the binding capacity characteristic to adults. In this period in the presence of foreign molecules similar to the target hormone faulty imprinting may occur with life-long consequences. Soy bean contains phytosteroids which can mimic estrogen effects. In the present experiments single genistein (20 microg) or combined genistein + benzpyrene (20 microg) treatments were done neonatally and the sexual behavior of male and female adult animals was studied. Genistein significantly increased the lordosis quotient of females, which was compensated by neonatal benzpyrene treatment. Genistein also enhanced the sexual activity of males, and this was significantly not reduced by parallel benzpyrene treatment. The results show that neonatal genistein exposure can imprint sexual activity for life and the presence of a second imprinter can modify genistein's behavioral effect.  相似文献   

6.
Hormonal imprinting is characteristic of the neonatal age, in which the receptor of the target cell matures, i.e. acquires its adult binding capacity, and cellular response becomes established in presence of the adequate hormone. The normal course of imprinting may be altered by certain molecules (related hormones, hormone analogons) which are able to bind to the receptor of the adequate hormone. The chemically related gonadotropic and thyrotropic hormones may overlap on each other's receptors not only in the perinatal age, but also in the early adulthood, and this overlap of the binding may give rise to an imprinting-like effect. An example of this phenomenon was observed in the present study, in which rats of seven weeks of age treated with gonadotropin showed a significant decrease in thyroidic response to TSH, and exposure to TSH failed to increase their basic thyroxine concentration to the normal (control) level. This depressive effect of gonadotropin was slightly reduced in the presence of LPS (endotoxin), causing membrane perturbation, while pretreatment with LPS and TSH accounted for an increased sensitivity to TSH in later phases of the rat's life. These experimental observations support the possibility of a special form of imprinting in adolescence.  相似文献   

7.
Hormonal imprinting takes place perinatally at the first encounter between the developing receptor and its target hormone, resulting in the accomplishment of normal receptor development. In the presence of an excess of target hormone or the absence of it, or an excess of related molecules which can be bound by the receptor, faulty imprinting develops with life-long consequences. In previous experiments neonatal endorphin exposure caused a decrease in endorphin and serotonin content of peritoneal mast cells of adult animals. In the present experiment 25-day-old (weaned) female rats received 2 microg endorphin, and the endorphin as well as serotonin content of adult mast cells and white blood cells was studied by flow cytometry and confocal microscopy. Peritoneal lymphocytes and blood monocytes contained significantly (p<0.01) less endorphin and peritoneal mast cells less serotonin (p<0.07, i.e. of questionable significance) than the untreated control. The results bring attention to the possibility of durable imprinting of differentiating cells later in life and to the durable (possibly life-long) effect of an endorphin excess (perhaps caused by injury) manifested in the change of endorphin and serotonin content of immune cells.  相似文献   

8.
Hormonal imprinting usually takes place perinatally at the first encounter between the developing receptor and its target hormone, determining the future binding capacity of the receptor for life. Molecules similar to a hormone can cause faulty imprinting also with life-long consequences. Hormone production of the imprinted cell is also durably influenced. In cytogenic organs imprinting can also be provoked in adulthood. At present the effect of a single terfenadine treatment in adult rats on the histamine content of peritoneal cells (lymphocytes, mast cells and the monocyte-macrophage-granulocyte group), white blood cells (lymphocytes, granulocytes, monocytes) and thymic lymphocytes was studied 3 weeks after treatment to clarify the effect of prolonged treatment with an antihistamine in adulthood.The cells were studied by flow cytometric analysis. Peritoneal mast cells contained significantly more and thymic lymphocytes significantly less histamine than controls. In the other cells the differences were not significant. The results support earlier observations on the effect of antihistamines on mast cell histamine release (inhibition) and call attention to the fact that this effect is durable (hormonal imprinting provoked in adults).  相似文献   

9.
The first encounter between the developing receptor and its target hormone establishes the hormonal imprinting which is needed for the normal function of the cell. In the presence of foreign-however able to bind-molecules, faulty imprinting develops with lifelong consequences. Hormonal imprinting influences not only the receptors, but also the later hormone production of cells. The critical time of hormonal imprinting is the perinatal period, however it can be executed sometimes (in continuously differentiating cells) also at puberty. As in earlier experiments single neonatal serotonin treatment caused a life-long alteration of white blood serotonin content in female rats, the early (10-19 day) and late (8 weeks) effect of single pubertal serotonin treatment was studied presently, by using flow cytometry. In contrast to the earlier (neonatal) results, pubertal treatment caused a radical reduction of serotonin content in male's lymphocytes, monocytes, granulocytes and mast cells, independent on the time of study. The effect in females was rather increasing, however uncertain. The experiments call attention to the possible different effects of neonatal and pubertal hormonal imprinting and to the imprintability of blood cells in adolescence.  相似文献   

10.
Csaba G  Inczefi-Gonda A 《Life sciences》2000,67(20):2531-2537
For studying the mechanism of perinatal hormonal imprinting newborn rats were treated with a single injection of the antihormones, mifepristone (RU486) or tamoxifen (100 microg each). Glucocorticoid receptors of thymi of 6 weeks old male and female, and uterine estrogen receptors of 2 months old female rats were studied for dexamethasone or estradiol binding, respectively. Tamoxifen caused faulty imprinting both in the thymic and uterine receptors, increasing affinity and density of males, and decreasing females' glucocorticoid receptors as well, as decreasing the density of uterine estradiol receptors. Neonatal mifepristone treatment was indifferent to the thymus, and decreasing to density of uterine estrogen receptors. Males' body weight significantly decreased 6 weeks after tamoxifen treatment. The results suggest that imprinting can not be provoked by a molecule (hormone antagonist) which can bind to the receptor without any postreceptorial events (mifepristone/glucocorticoid receptor), in the presence of some postreceptorial effects the reaction takes place, however the strongest reaction can be observed by the hormone analogue (tamoxifen) with postreceptorial (agonist) effect, not considering that the receptor is the direct target of the molecule or a cross-reaction is present.  相似文献   

11.
Hormonal imprinting takes place perinatally at the first encounter between the hormone and its target receptor, causing the finishment of the maturation of receptor-signal transduction system. In the presence of an excess of the target hormone or related molecules faulty imprinting develops with life-long consequences. In earlier experiments single neonatal treatment with minute dose of IL-6 caused also prolonged stimulation of IL-6 production. In the present experiment newborn female and male rats were treated with 20 microg serotonin (hormonal imprinting) and were studied for serotonin content of different cell types in adult age. Serotonin content was measured by flow cytometry and its localization was determined by confocal microscopy. Serotonin content was detected in white blood cells (lymphocytes, monocytes and granulocytes); in lymphocytes, monocytes (macrophages), granulocytes and mast cells of peritoneal fluid and thymic lymphocytes. Serotonin was present in all cell types of control animals studied. Serotonin content extremely elevated in the white blood cells and also increased in the peritoneal cells of neonatally treated female animals. There was no elevation in thymic lymphocytes. The mean values of male animals remained at the control level. The experiments call attention to the life-long effect of the perinatal hormonal imprinting manifested presently in the elevation of serotonin content and point to the gender differences of serotonin imprinting. Considering the role of serotonin in mood and psychiatric diseases, the observations could have some clinical importance.  相似文献   

12.
Hormonal imprinting takes place at the first interaction of a given hormone with the cell (the Tetrahymena in the present case) and accounts for a greater responsiveness to the hormone on re-exposure(s). The Tetrahymena is able to bind insulin and Concanavalin-A (Con-A) as well. Exposure to both ligands—simultaneously or in sequence—enhances the binding of both in the progeny generations. It follows that the lectin, which inhibits insulin binding by direct action, enhances rather than depresses the effect of insulin-induced imprinting.  相似文献   

13.
The biological phenomenon, hormonal imprinting, was named and defined by us (Biol Rev, 1980, 55, 47-63) 30?years ago, after many experimental works and observations. Later, similar phenomena were also named to epigenetic imprinting or metabolic imprinting. In the case of hormonal imprinting, the first encounter between a hormone and its developing target cell receptor-usually at the perinatal period-determines the normal receptor-hormone connection for life. However, in this period, molecules similar to the target hormone (members of the same hormone family, synthetic drugs, environmental pollutants, etc), which are also able to bind to the receptor, provoke faulty imprinting also with lifelong-receptorial, behavioral, etc.,-consequences. Faulty hormonal imprinting could also be provoked later in life in continuously dividing cells and in the brain. Faulty hormonal imprinting is a disturbance of gene methylation pattern, which is epigenenetically inherited to the further generations (transgenerational imprinting). The absence of the normal or the presence of false hormonal imprinting predispose to or manifested in different diseases (e.g., malignant tumors, metabolic syndrome) long after the time of imprinting or in the progenies.  相似文献   

14.
Hormonal imprinting takes place at the first interaction of the cell with the adequate hormone, and exerts a lasting influence on cellular binding capacity and functional response over many subsequent cell generations. Hormonal imprinting can also be induced in cell lines. In a Chinese hamster ovary (CHO K1) cell line, inhibitor of endocytosis and cellular protein synthesis inhibited hormone binding in themselves, and in cultures preexposed to TSH they inhibited imprinting by TSH in a dose-dependent manner. The protein synthesis inhibitor cycloheximide and the microfilament de-organizing agent cytochalasin-B inhibited imprinting by TSH to a greater degree than all other inhibitors tested, indicating that apart from cellular binding capacity, unimpaired cellular protein synthesis and microfilament activity are essential prerequisites of hormonal imprinting.  相似文献   

15.
Hormonal imprinting takes place at the first encounter of the hormone and receptor, and results in a changed binding capacity and reaction of the cell and its progeny generations. The imprinting effect of three amino acids and their oligopeptides is studied using fluorescent-labelled peptides. Glycine and lysine could provoke positive imprinting (increased binding in the progeny generations) for their own peptides, but alanine could not. Mostly positive imprinting was provoked by glycine and lysine peptides for their own peptides of different chain length. The optimal chain length provoking self-imprinting was four for glycine, two for lysine and three for alanine. Except in this case, alanine was neutral or provoked mostly negative imprinting. After reaching the optimal chain length, there is a decline in binding. Evolutionary conclusions are discussed.  相似文献   

16.
Perinatally, the first encounter between the maturing receptor and its target hormone results in hormonal imprinting, which adjusts the binding capacity of the receptor for life. In the presence of an excess of the target hormone or foreign molecules than can be bound by the receptor, faulty imprinting carries life-long consequences. In cytogenic organs, imprinting could also be provoked in other periods of life (late imprinting). Imprinting also durably influences the production of the imprinter and related hormones. In the present study, single beta-endorphin doses was given to three-week old female rats at 3 microg/animal, and the serotonin in five brain regions (frontal cortex, striatum, hippocampus, hypothalamus and brain stem) and uterine estrogen receptor content were determined, thymic glucocorticoid receptor binding capacity was measured, and sexual behavior was tested at five months of age. Brain serotonin levels highly significantly decreased, while sexual activity (Meyerson index and lordosis quotient) increased. At the same time, uterine estrogen receptor affinity decreased. There was no change in receptor binding capacity in the thymus. We will go on to discuss interrelations between the results. The experiments demonstrate that a non-perinatal treatment with a molecule acting at receptor level (late imprinting) can also lastingly influence various indexes in non-cytogenic organs. The results call attention to the possible long-lasting influence of an endorphin surge (caused, for example, by pain) on brain serotonin content and sexual behavior.  相似文献   

17.
Hormonal imprinting takes place at the primary interaction between target cell and hormone, and alters cellular response to the hormone for lifetime (at the unicellular level in many subsequent generations). Imprinting induced in Tetrahymena cells by diiodotyrosine at the optimum temperature of 25 degrees C took effect on re-exposure to the hormone at 25 degrees C and 15 degrees C, but failed to take effect if the cells were first exposed to the hormone at 15 degrees C or 32 degrees C.  相似文献   

18.
19.
The unicellular Tetrahymena has receptors for hormones of higher vertebrates, produces these hormones, and their signal pathways are similar. The first encounter with a hormone in higher dose provokes the phenomenon of hormonal imprinting, by which the reaction of the cell is quantitatively modified. This modification is transmitted to the progeny generations. The duration of the single imprinter effect of two representative signal molecules, insulin and 5-HT (5-hydroxytryptamine), in two concentrations (10-6 and 10-15 M) were studied. The effects of imprinting were followed in 5 physiological indices: (i) insulin binding, (ii) 5-HT synthesis, (iii) swimming behaviour, (iv) cell growth and (v) chemotaxis in progeny generations 500 and 1000. The result of each index was different from the non-imprinted control functions, growth rate, swimming behaviour and chemotactic activity to insulin being enhanced, while others, e.g. synthesis and chemotactic responsiveness of 5-HT and the binding of insulin were reduced. This means that a function-specific heritable epigenetic change during imprinting occurs, and generally a single encounter with a femtomolar hormone concentration is enough for provoking durable and heritable imprinting in Tetrahymena. The experiments demonstrate the possibility of epigenetic effects at a unicellular level and call attention to the possibility that the character of unicellular organisms has changed through to the present day due to an enormous amount of non-physiological imprinter substances in their environment. The results - together with results obtained earlier in mammals - point to the validity of epigenetic imprinting effects throughout the animal world.  相似文献   

20.
In the experiments the effect of late hormonal imprinting to the liver glucocorticoid receptors were studied. Three-week-old (weanling) female rats were treated with five molecules acting at receptor level and four weeks later receptor kinetic analysis was done on liver glucocorticoid receptors. The tricyclic antidepressant, histamine and serotonin receptor blocker mianserin positively influenced receptor density and negatively receptor affinity. Vitamin D3 and the environmental pollutant benzpyrene elevated receptor density. Mifepristone (RU 486) which is bound by progesterone- and glucorticoid-receptor without postreceptorial effects was ineffective as well, as the H1 receptor blocker chlorpheniramine. The results demonstrate that receptor-level-acting foreign molecules can durably influence the binding capacity of glucocorticoid receptors, however, this is not a general phenomenon and it is not dependent on the type of receptors (membrane or cytosol). Those molecules were effective which 1. have receptor in the same receptor family (vitamin D3) and have postreceptorial effect, or 2. have a structure similar to steroids (benzpyrene) or 3. deeply influenced steroid receptors in earlier experiments (mianserin). This effect should be considered before administering such type of medicaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号