首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.

Background

Coalescent simulations have proven very useful in many population genetics studies. In order to arrive to meaningful conclusions, it is important that these simulations resemble the process of molecular evolution as much as possible. To date, no single coalescent program is able to simulate codon sequences sampled from populations with recombination, migration and growth.

Results

We introduce a new coalescent program, called Recodon, which is able to simulate samples of coding DNA sequences under complex scenarios in which several evolutionary forces can interact simultaneously (namely, recombination, migration and demography). The basic codon model implemented is an extension to the general time-reversible model of nucleotide substitution with a proportion of invariable sites and among-site rate variation. In addition, the program implements non-reversible processes and mixtures of different codon models.

Conclusion

Recodon is a flexible tool for the simulation of coding DNA sequences under realistic evolutionary models. These simulations can be used to build parameter distributions for testing evolutionary hypotheses using experimental data. Recodon is written in C, can run in parallel, and is freely available from http://darwin.uvigo.es/.  相似文献   

4.

Motivation

Genome-wide screens for structured ncRNA genes in mammals, urochordates, and nematodes have predicted thousands of putative ncRNA genes and other structured RNA motifs. A prerequisite for their functional annotation is to determine the reading direction with high precision.

Results

While folding energies of an RNA and its reverse complement are similar, the differences are sufficient at least in conjunction with substitution patterns to discriminate between structured RNAs and their complements. We present here a support vector machine that reliably classifies the reading direction of a structured RNA from a multiple sequence alignment and provides a considerable improvement in classification accuracy over previous approaches.

Software

RNAstrand is freely available as a stand-alone tool from http://www.bioinf.uni-leipzig.de/Software/RNAstrand and is also included in the latest release of RNAz, a part of the Vienna RNA Package.  相似文献   

5.
MrBayes is a program that uses a Bayesian framework for inferring phylogenetic relationships. As MrBayes is a command-line-driven program, users acquainted to programs with graphical user interfaces will not find it easy to operate, especially as it requires a complex input format for the data to be analysed. We thus developed siMBa (simple MrBayes), a simple graphical user interface for MrBayes. This tool gives the user interactive control over most of the parameters and also facilitates the input of a multiple sequence alignment, as any widely used format can be used. siMBa is coded in Perl using the Tk module. Executables are provided for Windows, Linux, and Macintosh. The Perl codes, along with executables for different operating system, are freely available to download from [http://www.thines-lab.senckenberg.de/simba].  相似文献   

6.

Background

Computing accurate nucleic acid melting temperatures has become a crucial step for the efficiency and the optimisation of numerous molecular biology techniques such as in situ hybridization, PCR, antigene targeting, and microarrays. MELTING is a free open source software which computes the enthalpy, entropy and melting temperature of nucleic acids. MELTING 4.2 was able to handle several types of hybridization such as DNA/DNA, RNA/RNA, DNA/RNA and provided corrections to melting temperatures due to the presence of sodium. The program can use either an approximative approach or a more accurate Nearest-Neighbor approach.

Results

Two new versions of the MELTING software have been released. MELTING 4.3 is a direct update of version 4.2, integrating newly available thermodynamic parameters for inosine, a modified adenine base with an universal base capacity, and incorporates a correction for magnesium. MELTING 5 is a complete reimplementation which allows much greater flexibility and extensibility. It incorporates all the thermodynamic parameters and corrections provided in MELTING 4.x and introduces a large set of thermodynamic formulae and parameters, to facilitate the calculation of melting temperatures for perfectly matching sequences, mismatches, bulge loops, CNG repeats, dangling ends, inosines, locked nucleic acids, 2-hydroxyadenines and azobenzenes. It also includes temperature corrections for monovalent ions (sodium, potassium, Tris), magnesium ions and commonly used denaturing agents such as formamide and DMSO.

Conclusions

MELTING is a useful and very flexible tool for predicting melting temperatures using approximative formulae or Nearest-Neighbor approaches, where one can select different sets of Nearest-Neighbor parameters, corrections and formulae. Both versions are freely available at http://sourceforge.net/projects/melting/and at http://www.ebi.ac.uk/compneur-srv/melting/under the terms of the GPL license.  相似文献   

7.
8.

Background

The identification of gene sets that are significantly impacted in a given condition based on microarray data is a crucial step in current life science research. Most gene set analysis methods treat genes equally, regardless how specific they are to a given gene set.

Results

In this work we propose a new gene set analysis method that computes a gene set score as the mean of absolute values of weighted moderated gene t-scores. The gene weights are designed to emphasize the genes appearing in few gene sets, versus genes that appear in many gene sets. We demonstrate the usefulness of the method when analyzing gene sets that correspond to the KEGG pathways, and hence we called our method P athway A nalysis with D own-weighting of O verlapping G enes (PADOG). Unlike most gene set analysis methods which are validated through the analysis of 2-3 data sets followed by a human interpretation of the results, the validation employed here uses 24 different data sets and a completely objective assessment scheme that makes minimal assumptions and eliminates the need for possibly biased human assessments of the analysis results.

Conclusions

PADOG significantly improves gene set ranking and boosts sensitivity of analysis using information already available in the gene expression profiles and the collection of gene sets to be analyzed. The advantages of PADOG over other existing approaches are shown to be stable to changes in the database of gene sets to be analyzed. PADOG was implemented as an R package available at: http://bioinformaticsprb.med.wayne.edu/PADOG/or http://www.bioconductor.org.  相似文献   

9.

Background

The process of drug discovery and development is time-consuming and costly, and the probability of success is low. Therefore, there is rising interest in repositioning existing drugs for new medical indications. When successful, this process reduces the risk of failure and costs associated with de novo drug development. However, in many cases, new indications of existing drugs have been found serendipitously. Thus there is a clear need for establishment of rational methods for drug repositioning.

Results

In this study, we have established a database we call “PharmDB” which integrates data associated with disease indications, drug development, and associated proteins, and known interactions extracted from various established databases. To explore linkages of known drugs to diseases of interest from within PharmDB, we designed the Shared Neighborhood Scoring (SNS) algorithm. And to facilitate exploration of tripartite (Drug-Protein-Disease) network, we developed a graphical data visualization software program called phExplorer, which allows us to browse PharmDB data in an interactive and dynamic manner. We validated this knowledge-based tool kit, by identifying a potential application of a hypertension drug, benzthiazide (TBZT), to induce lung cancer cell death.

Conclusions

By combining PharmDB, an integrated tripartite database, with Shared Neighborhood Scoring (SNS) algorithm, we developed a knowledge platform to rationally identify new indications for known FDA approved drugs, which can be customized to specific projects using manual curation. The data in PharmDB is open access and can be easily explored with phExplorer and accessed via BioMart web service (http://www.i-pharm.org/, http://biomart.i-pharm.org/).  相似文献   

10.

Background

The MatrixMatchMaker algorithm was recently introduced to detect the similarity between phylogenetic trees and thus the coevolution between proteins. MMM finds the largest common submatrices between pairs of phylogenetic distance matrices, and has numerous advantages over existing methods of coevolution detection. However, these advantages came at the cost of a very long execution time.

Results

In this paper, we show that the problem of finding the maximum submatrix reduces to a multiple maximum clique subproblem on a graph of protein pairs. This allowed us to develop a new algorithm and program implementation, MMMvII, which achieved more than 600× speedup with comparable accuracy to the original MMM.

Conclusions

MMMvII will thus allow for more more extensive and intricate analyses of coevolution.

Availability

An implementation of the MMMvII algorithm is available at: http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php  相似文献   

11.
12.
13.

Background

Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up.

Findings

Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput.

Conclusions

ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.  相似文献   

14.

Background

During the cardiac cycle, the heart normally produces repeatable physiological sounds. However, under pathologic conditions, such as with heart valve stenosis or a ventricular septal defect, blood flow turbulence leads to the production of additional sounds, called murmurs. Murmurs are random in nature, while the underlying heart sounds are not (being deterministic).

Innovation

We show that a new analytical technique, which we call Digital Subtraction Phonocardiography (DSP), can be used to separate the random murmur component of the phonocardiogram from the underlying deterministic heart sounds.

Methods

We digitally recorded the phonocardiogram from the anterior chest wall in 60 infants and adults using a high-speed USB interface and the program Gold Wave http://www.goldwave.com. The recordings included individuals with cardiac structural disease as well as recordings from normal individuals and from individuals with innocent heart murmurs. Digital Subtraction Analysis of the signal was performed using a custom computer program called Murmurgram. In essence, this program subtracts the recorded sound from two adjacent cardiac cycles to produce a difference signal, herein called a "murmurgram". Other software used included Spectrogram (Version 16), GoldWave (Version 5.55) as well as custom MATLAB code.

Results

Our preliminary data is presented as a series of eight cases. These cases show how advanced signal processing techniques can be used to separate heart sounds from murmurs. Note that these results are preliminary in that normal ranges for obtained test results have not yet been established.

Conclusions

Cardiac murmurs can be separated from underlying deterministic heart sounds using DSP. DSP has the potential to become a reliable and economical new diagnostic approach to screening for structural heart disease. However, DSP must be further evaluated in a large series of patients with well-characterized pathology to determine its clinical potential.  相似文献   

15.

Background

Cardiopulmonary exercise testing (CPET) has become an important modality for the evaluation and management of patients with a diverse array of medical problems. However, interpreting these tests is often difficult and time consuming, requiring significant expertise.

Methods

We created a computer software program (XINT) that assists in CPET interpretation. The program uses an integrative approach as recommended in the Official Statement of the American Thoracic Society/American College of Chest Physicians (ATS/ACCP) on Cardiopulmonary Exercise Testing. In this paper we discuss the principles behind the software. We also provide the detailed logic in an accompanying file (Additional File 1). The actual program and the open source code are also available free over the Internet at http://www.xint.org. For convenience, the required download files can also be accessed from this article.

Results

To test the clinical usefulness of XINT, we present the computer generated interpretations of the case studies discussed in the ATS/ACCP document in another accompanying file (Additional File 2). We believe the interpretations are consistent with the document's criteria and the interpretations given by the expert panel.

Conclusion

Computers have become an integral part of modern life. Peer-reviewed scientific journals are now able to present not just medical concepts and experimental studies, but actual functioning medical interpretive software. This has enormous potential to improve medical diagnoses and patient care. We believe XINT is such a program that will give clinically useful interpretations when used by the medical community at large.  相似文献   

16.

Background

Given the complex mechanisms underlying biochemical processes systems biology researchers tend to build ever increasing computational models. However, dealing with complex systems entails a variety of problems, e.g. difficult intuitive understanding, variety of time scales or non-identifiable parameters. Therefore, methods are needed that, at least semi-automatically, help to elucidate how the complexity of a model can be reduced such that important behavior is maintained and the predictive capacity of the model is increased. The results should be easily accessible and interpretable. In the best case such methods may also provide insight into fundamental biochemical mechanisms.

Results

We have developed a strategy based on the Computational Singular Perturbation (CSP) method which can be used to perform a "biochemically-driven" model reduction of even large and complex kinetic ODE systems. We provide an implementation of the original CSP algorithm in COPASI (a COmplex PAthway SImulator) and applied the strategy to two example models of different degree of complexity - a simple one-enzyme system and a full-scale model of yeast glycolysis.

Conclusion

The results show the usefulness of the method for model simplification purposes as well as for analyzing fundamental biochemical mechanisms. COPASI is freely available at http://www.copasi.org.  相似文献   

17.

Background

PKQuest, a new physiologically based pharmacokinetic (PBPK) program, is applied to human ethanol data. The classical definition of first pass metabolism (FPM) based on the differences in the area under the curve (AUC) for identical intravenous and oral doses is invalid if the metabolism is non-linear (e.g. ethanol). Uncertainties in the measurement of FPM have led to controversy about the magnitude of gastric alcohol metabolism. PKQuest implements a new, rigorous definition of FPM based on finding the equivalent intravenous input function that would produce a blood time course identical to that observed for the oral intake. This input function equals the peripheral availability (PA) and the FPM is defined by: FPM = Total oral dose – PA. PKQuest also provides a quantitative measurement of the time course of intestinal absorption.

Methods

PKQuest was applied to previously published ethanol pharmacokinetic data.

Results

The rate of ethanol absorption is primarily limited by the rate of gastric emptying. For oral ethanol with a meal: absorption is slow (≈ 3 hours) and the fractional PKQuest FPM was 36% (0.15 gm/Kg dose) and 7% (0.3 gm/Kg). In contrast, fasting oral ethanol absorption is fast (≈ 50 minutes) and FPM is small.

Conclusions

The standard AUC and one compartment methods significantly overestimate the FPM. Gastric ethanol metabolism is not significant. Ingestion of a coincident meal with the ethanol can reduce the peak blood level by about 4 fold at low doses. PKQuest and all the examples are freely available on the web at http://www.pkquest.com.  相似文献   

18.
19.

Background

Bioinformatics applications are now routinely used to analyze large amounts of data. Application development often requires many cycles of optimization, compiling, and testing. Repeatedly loading large datasets can significantly slow down the development process. We have incorporated HotSwap functionality into the protein workbench STRAP, allowing developers to create plugins using the Java HotSwap technique.

Results

Users can load multiple protein sequences or structures into the main STRAP user interface, and simultaneously develop plugins using an editor of their choice such as Emacs. Saving changes to the Java file causes STRAP to recompile the plugin and automatically update its user interface without requiring recompilation of STRAP or reloading of protein data. This article presents a tutorial on how to develop HotSwap plugins. STRAP is available at http://strapjava.de and http://www.charite.de/bioinf/strap.

Conclusion

HotSwap is a useful and time-saving technique for bioinformatics developers. HotSwap can be used to efficiently develop bioinformatics applications that require loading large amounts of data into memory.  相似文献   

20.

Background

Genomic islands play an important role in medical, methylation and biological studies. To explore the region, we propose a CpG islands prediction analysis platform for genome sequence exploration (CpGPAP).

Results

CpGPAP is a web-based application that provides a user-friendly interface for predicting CpG islands in genome sequences or in user input sequences. The prediction algorithms supported in CpGPAP include complementary particle swarm optimization (CPSO), a complementary genetic algorithm (CGA) and other methods (CpGPlot, CpGProD and CpGIS) found in the literature. The CpGPAP platform is easy to use and has three main features (1) selection of the prediction algorithm; (2) graphic visualization of results; and (3) application of related tools and dataset downloads. These features allow the user to easily view CpG island results and download the relevant island data. CpGPAP is freely available at http://bio.kuas.edu.tw/CpGPAP/.

Conclusions

The platform's supported algorithms (CPSO and CGA) provide a higher sensitivity and a higher correlation coefficient when compared to CpGPlot, CpGProD, CpGIS, and CpGcluster over an entire chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号