首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of an endogenous activator of calpain in rat skeletal muscle   总被引:3,自引:0,他引:3  
An additional component of the regulatory system of rat skeletal muscle calpain has been identified. It exerts a potent activating effect on calpain activity and is a heat stable small molecular weight protein. Of the two calpain isozymes present in muscle, the activator is specific for calpain II, being uneffective with calpain I. It promotes activation of the proteinase by reducing 50 fold, from 1 mM to of 20 microM, the requirement of Ca2+ for maximum catalytic activity of the proteinase. However in the presence of the activator calpain II expresses a consistent fraction of the maximum activity even at significantly lower concentrations of Ca2+ (below 5 microM Ca2+). The activator effect follows kinetics that are consistent with the presence of specific binding sites on the calpain molecules. The activator not only removes in a dose dependent fashion the inhibition of calpain by calpastatin, but also prevents inhibition of the proteinase upon the addition of calpastatin. Competition experiments revealed that the proteinase contains distinct sites for the activator and the inhibitor, and that both ligands can bind to calpain with the formation of an almost fully active ternary complex.  相似文献   

2.
The mechanism of activation of human erythrocyte calpain was investigated using the immunoblotting technique with anticalpain monoclonal antibody. The purified calpain underwent a Ca2+-induced fragmentation of the 80 kDa subunit to 76 kDa and 36 kDa fragments. The behavior of the 76 kDa fragment in electrophoresis corresponded to the proteinase activity of calpain, whereas the behavior of the 80 kDa subunit and the 36 kDa fragment did not. When inside-out membrane vesicles were added to the reaction mixture of calpain and Ca2+ and the vesicles were separated from the supernatant solution by centrifugation, the 80 kDa subunit and 76 kDa fragment were found in the vesicle fraction. No other fragments were found in this fraction. On the other hand, the 80 kDa subunit and 36 kDa fragment were found in the supernatant fraction. When right-side-out membrane vesicles were added to the reaction mixture and the vesicles were separated from the supernatant fraction, no fragment was found in the vesicle fraction, while only the 36 kDa fragment was found in the supernatant fraction. These results indicate that the 80 kDa subunit of procalpain was bound in a Ca2+-dependent manner to the cytosolic surface of the plasma membrane and then underwent fragmentation to produce the 76 kDa fragment (active form) and that it expressed its proteinase activity at the surface of the membrane.  相似文献   

3.
Identification of calpain II in porcine sperm   总被引:2,自引:0,他引:2  
The role that proteolytic enzymes may play in membrane-associated phenomena of sperm has been the subject of extensive investigation. In the present study, we have examined the possibility that a Ca2+-activated, neutral protease, calpain II, may be associated with sperm membranes. Using indirect immunofluorescence with primary antibodies, which are polyclonal and monoclonal antibodies directed against the 80 kDa subunit of calpain II, we have established the presence of this antigen in porcine sperm. Staining by anticalpain II (80 kDa subunit) of the apical segment of the acrosomal cap and basal body (centriolar) region was seen consistently. Variable staining of the sperm tail was also observed. These observations, combined with our positive identification of a 80 kDa protein in acrosomal membranes (via immunoblot), document the association of this protease with sperm membranes. The proximity of calpain II to the acrosome suggests a potential role for the protease in the Ca2+-mediation of the acrosome reaction.  相似文献   

4.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

5.
Low and high Ca2+-requiring forms of Ca2+-dependent cysteine proteinase are known as calpain I and calpain II, respectively. We have obtained, for the first time, monospecific antibodies for calpain I and for calpain II. Using these antibodies and an electrophoretic blotting method, we have found that a small, but reproducible, amount of calpain I was associated with human erythrocyte membranes while the bulk of the protease was contained in the cytosol. Most of membrane-associated calpain I was extractable with 1% Triton X-100, but not with 0.1% detergent. In the presence of 0.1 mM Ca2+ and 5 mM cysteine, membrane-associated calpain I degraded the membrane protein band 4.1 preferentially and band 3 protein only slowly. The Ca2+-induced autodigestion of the membrane preparation was inhibited by leupeptin but not by a cytosolic calpain inhibitor, calpastatin, added to the incubation medium. No calpain II was detected in either erythrocyte cytosol or membranes when anti-calpain II antibody was used under the same conditions as those for the detection of calpain I.  相似文献   

6.
Calpain (Ca2+-dependent cysteine proteinase) was purified to apparent homogeneity from carp muscle by the method of DEAE-cellulose, hydroxylapatite and Ultrogel AcA 34 column chromatographies. The purified enzyme is classified as calpain II (high-Ca2+-requiring form of calpain) from the effects of Ca2+ concentration, pH and the antibiotics on the activity. Carp muscle calpain II was inhibited by rat liver calpastatin, the specific inhibitor for calpain. It is probable that the calpain-calpastatin system may play a biologically fundamental and common role in various cells, since the inhibitory effect of calpastatin on calpain from different tissues of different species is well conserved.  相似文献   

7.
Intracellular localization of two molecular species of calpain (Ca2+-dependent cysteine proteinase) was studied by immunocyto- and histochemical methods employing antibodies strictly monospecific for the respective antigens. Apparent immunological cross-reactivity between the larger subunits of calpain I (low Ca2+-requiring form) and calpain II (high Ca2+-requiring form) was calculated to be 15-17%, and two steps of affinity chromatography were needed to obtain antibodies which can discriminate between the two proteases. Indirect immunofluorescent staining of cultured PK 15 cells revealed diffuse staining of the cytoplasm with both antibodies against calpain I and calpain II. Preincubation with Ca2+-ionophore had no effect on the staining patterns. Sections of porcine kidney were stained by the avidin-biotinylated peroxidase complex method. The proximal and distal tubules and collecting duct were stained, but the glomerulus, macula densa, and vascular vessels were not stained by either anti-calpain I or anti-calpain II antibodies.  相似文献   

8.
All mammalian cells contain a calcium-dependent proteolytic system, composed by a proteinase, calpain, and an inhibitor, calpastatin. In some cell types an activator protein has also been identified. Moreover, two calpain isoforms, distinguishable on the basis of a different calcium requirement, can be present in a single cell. Both calpain forms are heterodimers composed of a heavy subunit (80 kDa) that contains the catalytic site and a smaller (regulatory?) subunit (30 kDa). Calpain I expresses full activity at 10-50 microM Ca2+, whereas calpain II requires calcium concentrations in the millimolar range. The removal by autoproteolysis of a fragment from the N-terminus of both calpain subunits generates a proteinase form that can express catalytic activity at concentrations of Ca2+ close to the physiological range. This process is significantly accelerated in the presence of cell membranes or phospholipid vesicles. Calpastatin, the specific inhibitor of calpain, prevents activation and the expression of catalytic activity of calpain. It is in itself a substrate of the proteinase and undergoes a degradation process which correlates with the general mechanism of regulation of the intracellular proteolytic system. The natural calpain activator specifically acts on calpain II isoform, by reducing the Ca2+ required for the autoproteolytic activation process. Based on the general properties of the calpain-calpastatin system and on the substrate specificity, its role in the expression of specific cell functions can be postulated.  相似文献   

9.
Human neutrophil calpain is a monomer of 85 kDa molecular weight. The proteinase shows an absolute requirement for Ca2+ with maximal catalytic activity at 0.1-0.2 mM Ca2+ and negligible activity at 1-5 microM Ca2+. At this concentration of Ca2+ neutrophil calpain becomes active and reaches 65% of its maximal catalytic activity following interaction with plasma membranes. The activation is fully reversible since the enzyme returns to its native, high Ca2+ requiring form following removal of the membranes. Membrane phospholipids appear to be the physiological compounds responsible for the promotion of such reversible activation. Unlike other Ca2+ dependent proteinases, neutrophil calpain does not undergo conversion to a low Ca2+ requiring form by limited autoproteolysis.  相似文献   

10.
Platelet factor XIII is activated by calpain   总被引:2,自引:0,他引:2  
The action of calpain (EC 3.4.22.17; Ca2+-dependent cysteine proteinase) on platelet factor XIII has been studied. Calpain I activated platelet factor XIII up to 76% of the maximum level observed with thrombin. Activation was accompanied by the limited proteolysis of the a subunit of platelet factor XIII to produce a 76 kDa fragment which was comparable to the proteolytic product by thrombin. Activation of platelet factor XIII by calpain was inhibited by EDTA, leupeptin, and endogenous calpain-specific inhibitor calpastatin. These findings suggest that calpain is responsible for the intracellular activation of platelet factor XIII.  相似文献   

11.
Comparison of calpain I and calpain II from carp muscle   总被引:2,自引:0,他引:2  
1. The content of calpain II is 3.4 times more than that of calpain I when estimated by the elution profiles from a column of DEAE-cellulose. 2. Calpain I required 1 mM Ca2+ and calpain II required 5 mM Ca2+ to show the full activities. These data demonstrated that Ca2+-sensitivities of both calpains were lower than those of mammalian calpains, respectively. 3. The optimum caseinolytic activity was pH 7.2 for calpain I and pH 7.5 for calpain II. 4. The molecular weight of calpain I was estimated to be 110 k and that of calpain II to be 120 k by gel filtration. 5. Calpain I was much more heat-stable than calpain II around 50-60 degrees C. 6. Both calpains were sensitive to calpastatin, an endogenous inhibitor for calpain.  相似文献   

12.
Purified calpain I and calpain II from porcine erythrocytes and kidney were cross-linked with a bifunctional reagent, disuccinimidyl suberate, and the cross-linked products were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The major product had a molecular mass of 105 kDa, while the starting materials were resolved into 80-kDa and 30-kDa subunits. The cross-linking in the presence of 2 mM Ca2+ yielded several higher-molecular-weight species. The cross-linked products were shown to contain both the 80-kDa and 30-kDa proteins by means of immunoblotting with antibodies monospecific for the respective subunits, suggesting that the original calpain molecule existed in solution as an 80-kDa plus 30-kDa heterodimer and that Ca2+ induced closer association of these heterodimeric molecules.  相似文献   

13.
Free calcium and calpain I activity   总被引:1,自引:0,他引:1  
Activation of purified calpain I proceeds through a Ca(2+)-induced autolysis from the 80 kDa catalytic subunit to a 76 kDa form via an intermediate 78 kDa form, and from a 30 kDa form to a 18 kDa form as the result of two autocatalytic processes (intra and intermolecular). The minimum Ca2+ requirements for autolysis and proteolysis have been determined by physico-chemical and electrophoretic methods in the presence or absence of a digestible substrate. According to our results the activation process needs less free Ca2+ than the proteolysis of a digestible substrate, which means that proteolysis is really subsequent to activation. For very low Ca2+ levels, a digestible substrate does not initiate the calpain I activation process. In the presence of phospholipid vesicles, such as PI, PS or a mixture of PI (20%), PS (20%) and PC (60%), the apparent kinetic constants of activation are greatly increased without any change in the initial velocity of the substrate proteolysis. Thus, enzyme activation and substrate proteolysis are observed as independent phenomena. These results obtained from experiments using low free Ca2+ concentrations enable us to propose a hypothesis for the mechanism of regulation by which the enzyme could be activated in the living cell.  相似文献   

14.
1. The intrinsic fluorescence of epoxysuccinyl-inhibited calpain II undergoes a Ca2(+)-dependent decrease which contrasts with the increase observed for calmodulin. 2. Calpain II was inhibited by the calmodulin antagonist toluidinylnaphthalenesulfonate (TNS), and a Ca2(+)-dependent increase in TNS fluorescence intensity was observed for epoxysuccinyl-inhibited calpain II. 3. The calmodulin antagonists calmidazolium CDZ and felodipine both caused decreases in the intrinsic fluorescence of epoxysuccinyl-inhibited calpain II. 4. Increasing concentrations of Ca2+ caused an increase in the fluorescence intensity of the inhibited enzyme in the presence of (CDZ), and a decrease in the presence of felodipine. 5. It is concluded from these studies that Ca2+ and calmodulin antagonists induce conformational changes in calpain II, and that changes occur in regions other than the Ca2(+)-binding domains.  相似文献   

15.
1. In millimolar Ca2+, smooth muscle calpains I and II were inhibited by aluminum ion. 2. At sub-millimolar Ca2+, calpain II, but not calpain I, was activated by low millimolar aluminum ion. 3. Calpastatin inhibited aluminum ion-activated calpain II. 4. Aluminum ion-activated and Ca(2+)-activated calpain II gave almost identical patterns of desmin cleavage. 5. Aluminum-activated calpain II, unlike the Ca(2+)-activated enzyme, did not autolyze and retained its proteolytic activity over extended periods of time.  相似文献   

16.
In the presence of micromolar concentrations of Ca2+ the catalytic 80 kDa subunit of human erythrocyte procalpain binds to the cytosolic surface of the erythrocyte membrane. Binding is rapid, highly specific and is reversed by the removal of Ca2+. In the bound form the 80 kDa catalytic subunit undergoes a rapid conversion to calpain, the active 75 kDa Ca2+-requiring proteinase. The activated proteinase produces extensive degradation of membrane components, particularly of band 4.1 and 2.1 proteins. Binding to membranes may represent an obligatory physiological mechanism for the conversion of procalpain to calpain.  相似文献   

17.
Rat skeletal muscle contains a calpain activator protein characterized by a high specificity for calpain II, the high Ca(2+)-requiring isoform of this class of proteinases. The activator protein increases the rate of intramolecular conversion of the native 80-kDa catalytic subunit of calpain into the autolysed 75-kDa forms with maximal rate at concentrations of calcium approximately 25 times lower than those required by the native proteinase. The activator protein interacts with native calpain II forming a 1:1 complex; interaction does not occur with the fully activated form, produced by autoproteolysis. Even after immobilization to membranes, the activator binds to calpain, which then undergoes sequential activation and release from its bound form. The activator is itself resistant to digestion by calpain II, whereas it increases the rate at which homologous calpastatin is degraded by the proteinase. Taken together, these results are indicative of the existence in rat skeletal muscle of an activating system specific for calpain II which is potentially involved in the regulation of the inhibitory efficiency of calpastatin, through modulation of its intracellular level.  相似文献   

18.
The proenzyme form of the Ca2+-requiring neutral proteinase of human erythrocytes (procalpain) is converted to the active proteinase (calpain) by low concentrations of Ca2+ in the presence of appropriate substrates such as beta-hemoglobin or heme-free beta-globin chains. Modification of these substrates by limited proteolysis with calpain abolishes their ability to promote the conversion of procalpain. A similar requirement for the presence of unmodified beta-hemoglobin or heme-free beta-globin chains is observed for the autocatalytic inactivation of calpain. The conversion of procalpain to calpain is accompanied by a small decrease in the molecular mass of the catalytic subunit, from 80 kDa to 75 kDa; however, the activation is not accelerated by the addition of a small quantity of calpain. The autocatalytic inactivation of active CANP is related to the disappearance of the 75 kDa subunit and the formation of smaller peptide fragments.  相似文献   

19.
Homogeneous porcine calpain (Ca2+-dependent cysteine proteinase) was found to hydrolyze a variety of peptides and synthetic substrates. Leu-Trp-Met-Arg-Phe-Ala, eledoisin-related peptide, alpha-neoendorphin, angiotensin I, luteinizing hormone-releasing hormone, neurotensin, dynorphin, glucagon, and oxidized insulin B chain were cleaved with a general preference for a Tyr, Met, or Arg residue in the P1 position preceded by a Leu or Val residue in the P2 position. No great difference in specificity was found between low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II. 4-Methylcoumaryl-7-amide (MCA) derivatives having a Leu(or Val)-Met(or Tyr)-MCA or a Leu-Lys-MCA sequence were also cleaved by either calpain I or calpain II with preference for Leu over Val by a factor of 9 to 16. Calpains I and II showed similar but not identical kinetic behavior for individual substrates. The Km and kcat values ranged from 0.23 to 7.08 mM and 0.062 to 0.805 s-1 for the calpains, while kcat/Km values for the calpains were only 1/433 to 1/5 of those for papain with a given substrate. With succinyl-Leu-Met(or Tyr)-MCA, calpains I and II were half-maximally activated at 12 and 260 microM Ca2+, respectively, and competitively inhibited by leupeptin (Ki = 0.32 microM for I and 0.43 microM for II) or antipain (Ki = 1.41 microM for I and 1.45 microM for II). Thus, this is the first report describing the specificity and kinetics of calpains I and II.  相似文献   

20.
Two different forms of Ca2+-dependent cysteine proteinase, low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II, are known to be heterodimers, each composed of one heavy (called 80K) and one light (called 30K) subunit. The most probable identity of the 30K and the substantial difference between the 80K subunits of porcine calpains I and II were clearly demonstrated by comparing the tryptic peptide maps obtained upon running a high performance liquid chromatography which permitted parallel detection of tryptophan-containing peptides by fluorometry. Comparison of the amino acid compositions of the two 30K and 80K subunits also confirmed this conclusion. The same chromatographical analysis also revealed close structural similarity of the human calpain I 30K subunit, and even some similarity existing between the calpain I 80K subunits of human and porcine origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号