首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The adenosine A(2A) receptor has emerged as an attractive target for the treatment of Parkinson's disease (PD). Evidence suggests that antagonists of the A(2A) receptor (A(2A) antagonists) may be neuroprotective and may help to alleviate the symptoms of PD. We have reported recently that several members of the (E)-8-styrylcaffeine class of A(2A) antagonists also are potent inhibitors of monoamine oxidase B (MAO-B). Since MAO-B inhibitors are known to possess anti-parkinsonian properties, dual-target-directed drugs that block both MAO-B and A(2A) receptors may have enhanced value in the management of PD. In an attempt to explore this concept further we have prepared three additional classes of C-8 substituted caffeinyl analogues. The 8-phenyl- and 8-benzylcaffeinyl analogues exhibited relatively weak MAO-B inhibition potencies while selected (E,E)-8-(4-phenylbutadien-1-yl)caffeinyl analogues were found to be exceptionally potent reversible MAO-B inhibitors with enzyme-inhibitor dissociation constants (K(i) values) ranging from 17 to 149 nM. Furthermore, these (E,E)-8-(4-phenylbutadien-1-yl)caffeines acted as potent A(2A) antagonists with K(i) values ranging from 59 to 153 nM. We conclude that the (E,E)-8-(4-phenylbutadien-1-yl)caffeines are a promising candidate class of dual-acting compounds.  相似文献   

2.
3.
Caffeine and more specific antagonists of the adenosine A(2A) receptor recently have been found to be neuroprotective in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease. Here we show that 8-(3-chlorostyryl)caffeine (CSC), a specific A(2A) antagonist closely related to caffeine, also attenuates MPTP-induced neurotoxicity. Because the neurotoxicity of MPTP relies on its oxidative metabolism to the mitochondrial toxin MPP(+), we investigated the actions of CSC on striatal MPTP metabolism in vivo. CSC elevated striatal levels of MPTP but lowered levels of the oxidative intermediate MPDP(+) and of MPP(+), suggesting that CSC blocks the conversion of MPTP to MPDP(+) in vivo. In assessing the direct effects of CSC and A(2A) receptors on monoamine oxidase (MAO) activity, we found that CSC potently and specifically inhibited mouse brain mitochondrial MAO-B activity in vitro with a K(i) value of 100 nm, whereas caffeine and another relatively specific A(2A) antagonist produced little or no inhibition. The A(2A) receptor independence of MAO-B inhibition by CSC was further supported by the similarity of brain MAO activities derived from A(2A) receptor knockout and wild-type mice and was confirmed by demonstrating potent inhibition of A(2A) receptor knockout-derived MAO-B by CSC. Together, these data indicate that CSC possesses dual actions of MAO-B inhibition and A(2A) receptor antagonism, a unique combination suggesting a new class of compounds with the potential for enhanced neuroprotective properties.  相似文献   

4.
Pinna A  Wardas J  Simola N  Morelli M 《Life sciences》2005,77(26):3259-3267
The development of non-dopaminergic therapies for the treatment of Parkinson's disease (PD) has attracted much interest in recent years. Among new different classes of drugs, adenosine A2A receptor antagonists have emerged as best candidates. The present review will provide an updated summary of the results reported in literature concerning the effects of adenosine A2A antagonists in rodent and primate models of PD. These results show that A2A receptor antagonists improve motor deficits without inducing dyskinesia and counteract parkinsonian tremor. In progress clinical trials have shown that a low dose of L-DOPA plus KW-6002 produced symptomatic relief no different from that produced by an optimal dose of L-DOPA alone, whereas dyskinesias were reduced rendering this class of compounds particularly attractive.  相似文献   

5.
6.
Adenosine A2A receptors are abundant in the caudate-putamen and involved in the motor control in several species. In MPTP-treated monkeys, A2A receptor-blockade with an antagonist alleviates parkinsonian symptoms without provoking dyskinesia, suggesting this receptor may offer a new target for the antisymptomatic therapy of Parkinson's disease. In the present study, a significant neuroprotective effect of A2A receptor antagonists is shown in experimental models of Parkinson's disease. Oral administration of A2A receptor antagonists protected against the loss of nigral dopaminergic neuronal cells induced by 6-hydroxydopamine in rats. A2A antagonists also prevented the functional loss of dopaminergic nerve terminals in the striatum and the ensuing gliosis caused by MPTP in mice. The neuroprotective property of A2A receptor antagonists may be exerted by altering the packaging of these neurotoxins into vesicles, thus reducing their effective intracellular concentration. We therefore conclude that the adenosine A2A receptor may provide a novel target for the long-term medication of Parkinson's disease, because blockade of this receptor exerts both acutely antisymptomatic and chronically neuroprotective activities.  相似文献   

7.
Striatal adenosine A(2A) receptors (A(2A)Rs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D(2) receptors (D(2)Rs). A(2A)Rs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1) receptors (A(1)Rs). It has been hypothesized that postsynaptic A(2A)R antagonists should be useful in Parkinson's disease, while presynaptic A(2A)R antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2A)R antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2A)R-D(2)R and A(1)R-A(2A)R heteromers to determine possible differences in the affinity of these compounds for different A(2A)R heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2A)R when co-expressed with D(2)R than with A(1)R. KW-6002 showed the best relative affinity for A(2A)R co-expressed with D(2)R than co-expressed with A(1)R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential pre- versus postsynaptic actions, SCH-442416 and KW-6002 may be used as lead compounds to obtain more effective antidyskinetic and antiparkinsonian compounds, respectively.  相似文献   

8.
Parkinsonism (PD) is a neurodegenerative disorder of the brain resulting in dopamine deficiency caused by the progressive death of dopaminergic neurons. PD is characterized by a combination of rigidity, poverty of movement, tremor and postural instability. Selegiline is a selective and irreversible propargylamine type B monoamine oxidase (MAO-B) inhibitor. This drug, which inhibits dopamine metabolism, has been effectively used in the treatment of PD. However, its therapeutic effects are compromised by its many neurotoxic metabolites. To circumvent this obstacle, a novel MAO-B inhibitor, rasagiline, was developed. Paradoxically, the neuroprotective mechanism of propargylamines in different neuronal models appears to be independent of MAO-B inhibition. Recent investigations into the neuroprotective mechanism of propargylamines indicate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), MAO-B and/or other unknown proteins may represent pivotal proteins in the survival of the injured neurons. Delineation of the mechanism(s) involved in the neuroprotective effects exerted by MAO-B inhibitors may provide the key to preventive novel therapeutic modalities.  相似文献   

9.
Age-related increases in monoamine oxidase B (MAO-B) may contribute to neurodegeneration associated with Parkinson's disease (PD). The MAO-B inhibitor deprenyl, a long-standing antiparkinsonian therapy, is currently used clinically in concert with the dopamine precursor L-DOPA. Clinical studies suggesting that deprenyl treatment alone is not protective against PD associated mortality were targeted to symptomatic patients. However, dopamine loss is at least 60% by the time PD is symptomatically detectable, therefore lack of effect of MAO-B inhibition in these patients does not negate a role for MAO-B in pre-symptomatic dopaminergic loss. In order to directly evaluate the role of age-related elevations in astroglial MAO-B in the early initiation or progression of PD, we created genetically engineered transgenic mice in which MAO-B levels could be specifically induced within astroglia in adult animals. Elevated astrocytic MAO-B mimicking age related increase resulted in specific, selective and progressive loss of dopaminergic neurons in the substantia nigra (SN), the same subset of neurons primarily impacted in the human condition. This was accompanied by other PD-related alterations including selective decreases in mitochondrial complex I activity and increased mitochondrial oxidative stress. Along with a global astrogliosis, we observed local microglial activation within the SN. These pathologies correlated with decreased locomotor activity. Importantly, these events occurred even in the absence of the PD-inducing neurotoxin MPTP. Our data demonstrates that elevation of murine astrocytic MAO-B by itself can induce several phenotypes of PD, signifying that MAO-B could be directly involved in multiple aspects of disease neuropathology. Mechanistically this may involve increases in membrane permeant H(2)O(2) which can oxidize dopamine within dopaminergic neurons to dopaminochrome which, via interaction with mitochondrial complex I, can result in increased mitochondrial superoxide. Our inducible astrocytic MAO-B transgenic provides a novel model for exploring pathways involved in initiation and progression of several key features associated with PD pathology and for therapeutic drug testing.  相似文献   

10.
Adenosine A2A receptors antagonists produce neuroprotective effects in animal models of Parkinson’s disease (PD). As neuroinflammation is involved in PD pathogenesis, both neuronal and glial A2A receptors might participate to neuroprotection. We employed complementary pharmacologic and genetic approaches to A2A receptor inactivation, in a multiple MPTP mouse model of PD, to investigate the cellular basis of neuroprotection by A2A antagonism. MPTP·HCl (20 mg/kg daily for 4 days) was administered in mice treated with the A2A antagonist SCH58261, or in conditional knockout mice lacking A2A receptors on forebrain neurons (fbnA2AKO mice). MPTP‐induced partial loss of dopamine neurons in substantia nigra pars compacta (SNc) and striatum (Str), associated with increased astroglial and microglial immunoreactivity in these areas. Astroglia was similarly activated 1, 3, and 7 days after MPTP administration, whereas maximal microglial reactivity was detected on day 1, returning to baseline 7 days after MPTP administration. SCH58261 attenuated dopamine cell loss and gliosis in SNc and Str. Selective depletion of A2A receptors in fbnA2AKO mice completely prevented MPTP‐induced dopamine neuron degeneration and gliosis in SNc, and partially counteracted gliosis in Str. Results provide evidence of a primary role played by neuronal A2A receptors in neuroprotective effects of A2A antagonists in a multiple MPTP injections model of PD. With the symptomatic antiparkinsonian potential of several A2A receptor antagonists being pursued in clinical trials, this study adds to the rationale for broader clinical benefit and use of these drugs early in the treatment of PD.  相似文献   

11.
In order to establish whether the antioxidant and iron-chelating activities of R-apomorphine (R-APO), a D(1)-D(2) receptor agonist, may contribute to its neuroprotective property, its S-isomer, which is not a dopamine agonist, was studied. The neuroprotective property of R- and S-APO has been studied in the MPTP model of Parkinson's disease (PD). Both S-APO (0.5-1 mg/kg, subcutaneous) and R-APO (10 mg/kg) pretreatment of C57-BL mice, protected against MPTP (24 mg/kg, intraperitoneally) induced dopamine (DA) depletion and reduction in tyrosine hydroxylase (TH) activity. However, only R-APO prevented nigro-striatal neuronal cell degeneration, as indicated by the immunohistochemistry of TH positive neurones in substantia nigra and by western analysis of striatal TH content. R-APO prevented the reduction of striatal-GSH and the increase in the ratio of GSSG over total glutathione, caused by MPTP treatment. In vitro both R-APO and S-APO inhibited monoamine oxidase A and B activity at relatively high concentrations (100 and 300 micromol/L, respectively). The elevated activity of TH induced by the two enantiomers may contribute to the maintenance of normal DA levels, suggesting that one of the targets of these molecules may involve upregulation of TH activity. It is suggested that the antioxidant and iron-chelating properties, possible monoamine oxidase inhibitory actions, together with activation of DA receptors, may participate in the mechanism of neuroprotection by APO enantiomers against MPTP.  相似文献   

12.
13.
Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In both cases, MAO-B inhibition was a necessary condition in order to observe the protective effect. When adult-old (8-10 months) C57/BL6 mice were used, MPTP (25 mg/kg) administration induced 25 days later, an irreversible dopamine depletion. In these conditions, chronic administration with 0.15 micromol/kg of PF 9601N, before the toxin, every 24 h for 10 days, rendered almost total protection of dopamine depletion, whereas L-deprenyl yielded only 50% protection of the dopamine content, assayed in the same conditions. It is worth remarking, that in both cases MAO-B was not affected. From these results, it can be concluded that PF 9601N attenuates MPTP neurotoxicity "in vivo" better than L-deprenyl through different mechanisms, with special relevance to the protective effect, independent of MAO-B inhibition, observed in the irreversibly MPTP-lesioned adult-old mice. Therefore, this novel non-amphetamine MAO-B inhibitor could be potentially effective in PD therapy.  相似文献   

14.
Latest results on the action of adenosine A2A receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson’s disease. Basal ganglia possess high levels of adenosine A2A receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson’s disease indicate that adenosine A2A receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A2A and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson’s disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A2A receptors. In animal models of Parkinson’s disease, the use of selective antagonists of adenosine A2A receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A2A receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A2A receptor antagonists might be used in both moderate and advanced stages of Parkinson’s disease. The long-lasting administration of adenosine A2A receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A2A receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A2A receptors, as an anti-Parkinson drug.  相似文献   

15.
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.  相似文献   

16.
Estrogen has been considered to be a neuroprotectant and a neuromodulator in many neuronal cell lines and tissue preparations. The protective effects of estrogen may be mediated through classical estrogen receptors (ERs), or may be due to its anti-oxidant properties which are independent of receptors. The current studies show that 17beta-estradiol (E2) is neuroprotective against beta-amyloid protein 25-35 (Abeta)-, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-, high density culture condition-, and serum deprivation-induced neuronal death in SK-N-SH human neuroblastoma cells. SK-N-SH cells express ERbeta, but not ERalpha, as detected by Western blot analysis. Among all the insults, MPTP, high density culture and serum deprivation induce apoptotic cell death in this cell system as detected by ELISA determination of mono/oligonucleosomes and DNA laddering, while Abeta induces necrotic cell death. The protective effects of E2 are abolished by the addition of tamoxifen and ICI 182,780 in the MPTP treated cells, but not in the other models, suggesting that the effect of E2 in the MPTP model is probably associated with activation of ERbeta. The addition of ICI 182,780 shows a mitogenic effect in SK-N-SH cells in the presence of E2 in control culture or in the Abeta treated groups. Also, ICI 182,780 induced expression of ERalpha. Collectively, the current studies suggest that E2 is neuroprotective in apoptotic and necrotic death induced by multiple insults in SK-N-SH human neuroblastoma cells. Involvement of ER is insult type dependent. ICI 182,780 is able to influence the expression of ERs, probably through upregulation of ERalpha when ERbeta is totally antagonized.  相似文献   

17.
18.
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) given in single doses to rats depleted norepinephrine concentration in heart and mesenteric artery but had little effect on catecholamine concentration in brain. MPTP did not share with amphetamine the ability to cause persistent depletion of striatal dopamine in iprindole-treated rats. Administration of MPTP via osmotic minipumps implanted s.c. for 24 hrs after a loading dose of MPTP in rats resulted in depletion of striatal dopamine and its metabolites one week later. MPTP in vitro was a reasonably potent, competitive and reversible inhibitor of MAO-A (monoamine oxidase type A). MPTP appeared to inhibit MAO-A in rat brain in vivo as determined by its antagonism of the inactivation of MAO-A by pargyline and by its antagonism of the increase in dopamine metabolites resulting from the administration of Ro 4-1284, a dopamine releaser. The inhibition of MAO-B by MPTP in vitro was noncompetitive, time-dependent, and not fully reversed by dialysis, consistent with the findings of others that MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP given s.c. resulted in marked depletion of dopamine and its metabolites one week later, and the depletion of dopamine was completely prevented by pretreatment with deprenyl, which inhibited MAO-B but not MAO-A. These and other studies in rodents may help in elucidating the mechanisms involved in the destructive effects of MPTP on striatal dopamine neurons that lead to symptoms of Parkinson's disease in humans and in monkeys.  相似文献   

19.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

20.
Beal MF 《Amino acids》2011,40(5):1305-1313
There is a substantial body of literature, which has demonstrated that creatine has neuroprotective effects both in vitro and in vivo. Creatine can protect against excitotoxicity as well as against β-amyloid toxicity in vitro. We carried out studies examining the efficacy of creatine as a neuroprotective agent in vivo. We demonstrated that creatine can protect against excitotoxic lesions produced by N-methyl-d-aspartate. We also showed that creatine is neuroprotective against lesions produced by the toxins malonate and 3-nitropropionic acid (3-NP) which are reversible and irreversible inhibitors of succinate dehydrogenase, respectively. Creatine produced dose-dependent neuroprotective effects against MPTP toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia nigra. We carried out a number of studies of the neuroprotective effects of creatine in transgenic mouse models of neurodegenerative diseases. We demonstrated that creatine produced an extension of survival, improved motor performance, and a reduction in loss of motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Creatine produced an extension of survival, as well as improved motor function, and a reduction in striatal atrophy in the R6/2 and the N-171-82Q transgenic mouse models of Huntington’s disease (HD), even when its administration was delayed until the onset of disease symptoms. We recently examined the neuroprotective effects of a combination of coenzyme Q10 (CoQ10) with creatine against both MPTP and 3-NP toxicity. We found that the combination of CoQ and creatine together produced additive neuroprotective effects in a chronic MPTP model, and it blocked the development of alpha-synuclein aggregates. In the 3-NP model of HD, CoQ and creatine produced additive neuroprotective effects against the size of the striatal lesions. In the R6/2 transgenic mouse model of HD, the combination of CoQ and creatine produced additive effects on improving survival. Creatine may stabilize mitochondrial creatine kinase, and prevent activation of the mitochondrial permeability transition. Creatine, however, was still neuroprotective in mice, which were deficient in mitochondrial creatine kinase. Administration of creatine increases the brain levels of creatine and phosphocreatine. Due to its neuroprotective effects, creatine is now in clinical trials for the treatment of Parkinson’s disease (PD) and HD. A phase 2 futility trial in PD showed approximately a 50% improvement in Unified Parkinson’s Disease Rating Scale at one year, and the compound was judged to be non futile. Creatine is now in a phase III clinical trial being carried out by the NET PD consortium. Creatine reduced plasma levels of 8-hydroxy-2-deoxyguanosine in HD patients phase II trial and was well-tolerated. Creatine is now being studied in a phase III clinical trial in HD, the CREST trial. Creatine, therefore, shows great promise in the treatment of a variety of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号