首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He ZH  Li J  Sundqvist C  Timko MP 《Plant physiology》1994,106(2):537-546
The effects of leaf developmental age on the expression of three nuclear gene families in pea (Pisum sativum L.) coding for enzymes of chlorophyll and heme biosynthesis have been examined. The steady-state levels of mRNAs encoding aminolevulinic acid (ALA) dehydratase, porphobilinogen (PBG) deaminase, and NADPH:protochlorophyllide reductase were measured by RNA gel blot and quantitative slot-blot analyses in the foliar leaves of embryos that had imbibed for 12 to 18 h and leaves of developing seedlings grown either in total darkness or under continuous white light for up to 14 d after imbibition. Both ALA dehydratase and PBG deaminase mRNAs were detectable in embryonic leaves, whereas mRNA encoding the NADPH:protochlorophyllide reductase was not observed at this early developmental stage. All three gene products were found to increase to approximately the same extent in the primary leaves of pea seedlings during the first 6 to 8 d after imbibition (postgermination) regardless of whether the plants were grown in darkness or under continuous white-light illumination. In the leaves of dark-grown seedlings, the highest levels of message accumulation were observed at approximately 8 to 10 d postgermination, and, thereafter, a steady decline in mRNA levels was observed. In the leaves of light-grown seedlings, steady-state levels of mRNA encoding the three chlorophyll biosynthetic enzymes were inversely correlated with leaf age, with youngest, rapidly expanding leaves containing the highest message levels. A corresponding increase in the three enzyme protein levels was also found during the early stages of development in the light or darkness; however, maximal accumulation of protein was delayed relative to peak levels of mRNA accumulation. We also found that although protochlorophyllide was detectable in the leaves immediately after imbibition, the time course of accumulation of the phototransformable form of the molecule coincided with NADPH:protochlorophyllide reductase expression. In studies in which dark-grown seedlings of various ages were subsequently transferred to light for 24 and 48 h, the effect of light on changes in steady-state mRNA levels was found to be more pronounced at later developmental stages. These results suggest that the expression of these three genes and likely those genes encoding other chlorophyll biosynthetic pathway enzymes are under the control of a common regulatory mechanism. Furthermore, it appears that not light, but rather as yet unidentified endogenous factors, are the primary regulatory factors controlling gene expression early in leaf development.  相似文献   

2.
Cyclotella meneghiniana grew heterotrophically in darkness when glucose in concentrations from 5 mg/liter to 10 g/liter was provided. The other compounds tested did not support growth. However, in continuous light (300 ft-c) growth wax not enhanced if glucose wax provided. Under diurnal conditions of light (300 ft-c) approximately 12–14 hr of darkness were required to observe the enhancement effects of glucose. Uptake studies with labeled glucose indicated that uptake is not dependent on glucose, but that it occurs only at low light intensities. Cells required 12–14 hr of darkness to develop the uptake system.  相似文献   

3.
4.
Barley ( Hordeum vulgare L. cvs Clipper, Procter, Astrix) seedlings were transferred from daylight to darkness and changes in chlorophyll a , chlorophyll b , protochlorophyllide and chlorophyllide (μ leaf−1) in either the first or second leaf determined spectrophotometrically after separating the esterified from unesterified pigments by partitioning between ammoniacal acetone and light petroleum ether. Chlorophyll a and b as well as protochlorophyllide accumulated in the dark. The ratio of chlorophyll to protochlorophyllide formed in the absence of light was 18:1. 5-aminolevulinic acid (10 m M ) promoted the synthesis of chlorophyll a and b and protochlorophyllide. Pigment synthesis and response to 5-aminolevulinic acid addition was related to tissue age. Mature tissue in the apical third of the leaf accumulated most chlorophyll, but per μg chlorophyll present at the time of transfer to darkness, was less efficient than immature tissue towards the base of the leaf. Immature tissue was also most responsive to added 5-aminolevulinic acid. Chlorophyll synthesis in the dark was accompanied by chloroplast development. Chloroplasts in immature leaf tissue increased in size and extent of thylakoid development when transferred from daylight to darkness. The results indicate that chlorophyll synthesis and chloroplast membrane development in light-grown barley continue into the dark phase of the diurnal cycle. A light-independent protochlorophyllide reductase in light-grown barley seedlings is postulated.  相似文献   

5.
Shi C  Shi X 《Biotechnology progress》2006,22(4):1050-1055
Light is necessary for hydrogenation of the D ring of protochlorophyllide leading to chlorophyllide formation in higher plants (light-dependent pathway), but it is not essential in phototrophic bacteria (dark pathway). Both pathways, however, occur in some algae, mosses, ferns, and gymnosperms, and each chloroplast genome of these organisms contains three genes, chlL, chlN, and chlB, encoding the three subunits of light-independent protochlorophyllide reductase (LIPOR) required for protochlorophyllide reduction in the dark. In this study, the three LIPOR genes chlL, chlN, and chlB were cloned from the chloroplast of Chlorella protothecoides CS-41 (CSIRO), which grew heterotrophically with considerable chlorophyll yield. Phylogenetic analysis of ChlL/BchL showed that C. protothecoides CS-41 and Chlorella vulgaris C-27 were closely related. Alignment of their amino acid sequences demonstrated that the conserved domains, including the ATP-binding motif and the Fe-S binding motif in the three subunits, were similar to those in nitrogenases. The three-dimensional structural model of ChlL revealed a hypothetical Fe-S center for redox control. Results from RT-PCR amplification indicated that the chlL gene in C. protothecoides contained a 951-bp intron, and the splicing catalytic core structure was similar to that of the light-regulated intron in the psbA gene of Chlamydomonas. The three genes were expressed in E. coli BL21. The sizes of ChlL, ChlN, and ChlB were estimated to be 38, 49, and 58 kDa, respectively, based on the SDS-PAGE analysis.  相似文献   

6.
Pigment mutant C-2A' of Scenedesmus obliquus accumulates only traces of chlorophyll, when grown heterotrophically in the dark. Immediately upon transfer of cells into fresh medium protochlorophyllide and protochlorophyll are formed, which accumulate to their maximum concentrations within 8 to 12 h. Subsequently, this protochlorophyll(ide) is degraded in the dark, but not transformed into chlorophyll. After 6–8 days of dark growth no protochlorophyll(ide) can be detected any more. The protochlorophyll(ide) pool of cultures, which contain reduced concentrations, can be reestablished either by addition of glucose or illumination with blue light; both increase the rate of respiration.
By low temperature spectroscopy in vivo and by absorption and fluorescence emission spectroscopy of pigment extracts it is shown that the protochlorophyllide accumulated in freshly inoculated cultures can be converted to chlorophyll in light.
From the action spectrum for chlorophyll formation after addition of glucose it can be seen that protochlorophyllide 636 and 649 are present and are photoconvertible in this mutant.  相似文献   

7.
8.
The changes in α-amylase activity and in starch and free sugar content were investigated in correlation with lipid mobilization inHelianthus annuus during the first 15 days of seedling growth in discontinuous light and in darkness. Throughout the seedling development α-amylase activity increased more significantly in light than in darkness. It was always lower in cotyledons than in other tissues of the embryo axis. In both culture conditions, most of the transitory carbohydrates accumulated in germinating cotyledons were very likely synthesized by gluconeogenesis from the stored lipid breakdown. Nevertheless, in light-grown cotyledons, photosynthesis contributes to increase the carbohydrate levels. The study of several soluble sugars indicates that 1) sucrose stored in cotyledons of mature seeds was used at the onset of seedling growth, more rapidly in light than in darkness, 2) galactose and xylose, both involved as precursors of some cell-wall polysaccharides, remained at a very low level throughout the 15 days and 3) glucose, fructose and maltose accumulated in old etiolated cotyledons in contrast to what occurred in the light.  相似文献   

9.
A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction.  相似文献   

10.
11.
An oat (Avena sativa L.) plant contains at least three phytochromes, which have monomeric masses of 125, 124, and 123 kilodaltons (kDa) (Wang et al., 1991, Planta 184, 96–104). The 124-kDa phytochrome is most abundant in dark-grown seedlings, while the other two phytochromes predominate in light-grown seedlings. Using three monoclonal antibodies, each specific to one of the three phytochromes, we have monitored by immunoblot assay the expression of these three phytochromes in the 5 d following onset of imbibition of seeds. On a per-organism basis, each of these three phytochromes increased in abundance for the first 3 d in the light, or for the first 4 d in darkness, after which they each began to decrease in quantity. When 3-d-old dark-grown seedlings were transferred to the light, the abundance of each of these three phytochromes decreased both in absolute amount and relative to the phytochrome levels in control seedlings kept in darkness. In contrast, when 3-d-old light-grown seedlings were transferred to darkness, the abundance of the 124-kDa and 125-kDa phytochromes increased while that of 123-kDa phytochrome remained unchanged. In each case, the level of phytochrome was greater than that of control seedlings maintained in the light. Thus, in addition to temporal regulation, all three phytochromes exhibit photoregulated expression at the protein level, although the magnitude of this photoregulation varies substantially. We thank Drs. Elizabeth Williams and Tammy Sage (Botany Department, University of Georgia, USA) for generously permitting us to use their image-analysis system. This research was supported by USDA NRICGP grant 91-37100-6490.  相似文献   

12.
This research was to examine if rice (Oryza sativa L.), a monocotyledon of angiosperm, was able to synthesize chlorophyll (Chl) in complete darkness. Five-cm-tall etiolated seedlings of rice were used as starting materials and treated with or without various concentrations of glucose and/or δ-aminolevulinic acid (ALA) in the dark. Leaves harvested at the indicated time were determined for their contents of Chl, protoporphyrin Ⅸ(Proto), Mg-protoporphyrin Ⅸ(Mg-Proto) and protochlorophyllide (Pchlide). The mole percentage of porphyrin was calculated. The Chl content in the etiolated rice seedlings slightly increased from about 2.5 μg/g to 7.5 μg/g within 12 d in the dark, but the total Chl of dark-grown rice increased from 0.36 μg/g to 3.6 μg/g. While the mole percentages of Proto, Mg-Proto and Pchlide in the dark-grown seedlings without any treatment were about 65%, 27.5% and 7.5% at the beginning, respectively, those in the light-grown seedlings were about 42.5%, 35% and 22.5%, respectively. The mole percentage of porphyrin of etiolated seedlings resumed its normal ratio within 2 d after treatment with glucose. While the Chl content of etiolated seedlings grown in culture solution with 3% and 6% glucose increased 2.5 and 4.0 folds, respectively, those with 3% and 6% glucose and 1 mmol/L ALA increased 22 and 24 folds, respectively. It is concluded that angiosperm might be able to synthesize a small amount of Chl in complete darkness, that either glucose or ALA could stimulate dark Chl synthesis in angiosperm, and that a combination of glucose and ALA exhibited an additional effect. It is still unknown and remains to be further explored what is the mechanism of the effect of glucose and ALA on the Chl synthesis of rice in the dark. Key words: angiosperm; rice; dark chlorophyll synthesis; glucose; δ-aminolevulinic acid; protoporphyrin Ⅸ; Mg-protoporphyrin Ⅸ; protochlorophyllide  相似文献   

13.
In the wild type of Scenedesmus obliquus strain D3 grown heterotrophically, the chlorophyll biosynthesis and thus the reduction of protochlorophyllide to chlorophyllide takes place in darkness. However, in pigment mutant C-2A' of Scenedesmus obliquus only traces of protochlorophyllide are reduced under optimal growth conditions in darkness. By lowering the growth temperature from 33° to 15–25°C, protochlorophyllide can be reduced in darkness. At 20°C this process is about 10 times more active than at 33°C, but reaches only about 13% of the light-dependent chlorophyll biosynthesis. The chlorophylls synthesized at the lower temperatures are inserted into the pigment-protein complexes and photosystem I as well as photosys-tem II capacities are developed. The rate of light-independent protochlorophyllide reduction at lower temperatures is not limited by the enzyme PChlide-oxidoreductase itself, but rather by its substrate, being in turn limited by the amount of 5-amino levulinic acid (ALA) available.  相似文献   

14.
Plastid genes encoding light-independent protochlorophyllide oxidoreductase (LIPOR) subunits were isolated from cryptophyte algae, the first example of such genes in plastids of secondary endosymbiotic origin. The presence of functional and nonfunctional copies of LIPOR genes in cryptophytes suggests that light-independent chlorophyll biosynthesis is a nonessential pathway in these organisms.  相似文献   

15.
It is shown that the monovinyl and divinyl protochlorophyllide biosynthetic patterns of etiolated maize (Zea mays L.), and cucumber (Cucumis sativus L.) seedlings and of their isolated etiochloroplasts can be modulated by light and darkness as was shown for green photoperiodically grown plants (E. E. Carey, C. A. Rebeiz 1985 Plant Physiol. 79: 1-6). In etiolated corn and cucumber seedlings and isolated etiochloroplasts poised in the divinyl protochlorophyllide biosynthetic mode by a 2 hour light pretreatment, darkness induced predominantly the biosynthesis of monovinyl protochlorophyllide in maize and of divinyl protochlorophyllide in cucumber. When etiolated seedlings and their isolated etiochloroplasts were poised in the monovinyl protochlorophyllide biosynthetic mode by a prolonged dark-pretreatment, light induced mainly the biosynthesis of divinyl protochlorophyllide in both maize and cucumber.  相似文献   

16.
Polymers synthesized by heterotrophically growing (glucose as carbon source) cultures of Aphanocapsa 6714 were compared with polymers synthesized in photosynthetically grown cultures. Loss of photosystem II by dark incubation, or inhibition of light-grown cells with the photosystem II-specific inhibitor dichlorophenylmethylurea, caused an 80 to 90% reduction in the rate of lipid and total ribonucleic acid synthesis, and more than a 90% reduction in the rate of protein synthesis. In contrast, glycogen synthesis was reduced only about 50% in dark cells and less than 30% in dichlorphenylmethylurea-inhibited cells. After longer heterotrophic growth, glycogen became the major component, whereas in photosynthetically grown cultures protein was the major constituent. 14C (from 14CO2 and/or [14C]glucose) assimilated into protein by heterotrophically grown cells was found in amino acids in nearly the same proportions as in photosynthetically grown cells. Thus, routes of biosynthesis available to autotropic cells were also available to heterotrophic cultures, but the supply of carbon precursors to those pathways was greatly reduced. The limited biosynthesis in heterotrophic cells was not due to a limitation for cellular energy. The adenylates were maintained at nearly the same concentrations (and hence the energy charge also) as in photosynthetic cells. The concentration of reduced nicotinamide adenine dinucleotide phosphate was higher in heterotrophic (dark) cells than in photosynthetic cells. From rates of CO2 fixation and/or glycogen biosynthesis it was determined that stationary-phase cells expended approximately 835, 165, and less than 42 nmol of adenosine 5'-triphosphate per mg (dry weight) of algae per 30 min during photosynthetic, photoheterotrophic, and chemoheterotrophic metabolism, respectively. Analysis of the soluble metabolite pools in dark heterotrophic cultures by double-labeling experiments revealed rapid equilibration of 14C through the monophosphate pools, but much slower movement of label into the diphosphate pools of fructose-1,6-diphosphate and sedoheptulose-1,7-diphosphate. Carbon did flow into 3-phosphoglycerate in the dark; however, the initial rate was low and the concentration of this metabolite soon fell to an undetectable level. In photosynthetic cells, 14C quickly equilibrated throughout all the intermediates of the reductive pentose cycle, in particular, into 3-phosphoglycerate. Analysis of glucose-6-phosphate dehydrogenase in cell extracts showed that the enzyme was very sensitive to product inhibition by reduced nicotinamide adenine dinucleotide.  相似文献   

17.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

18.
J. Eliezer  D. A. Morris 《Planta》1980,149(4):327-331
The putative auxin-transporting cells of the intact herbaceous dicotyledon are the young, differentiating vascular elements. The length of these cells was found to be considerably greater in dwarf (Meteor) than in tall (Alderman) varieties ofPisum sativum L., and to be greater in etiolated than in light-grown plants ofP. sativum cv Meteor andPhaseolus vulgaris L. cv Mexican Black. Under given light conditions during transport these large differences in cell length did not influence the shapes of the transport profiles or the velocity of transport of14C-labelled indol-3yl-acetic acid (IAA) applied to the apical bud. However, in both etiolated and light-grown bean and dwarf pea plants the velocity of transport in darkness was ca. 25% lower than that in light. Under the same conditions of transport velocities in bean were about twice those observed in the dwarf pea. Exposure to light during transport increased the rate of export of14C from the labelled shoot apex in green dwarf pea plants but not in etiolated plants. The light conditions to which the plants were exposed during growth and transport had little effect on the rates of uptake of IAA from the applied solutions. The results indicate that the velocity of auxin transport is independent of the frequency of cell-to-cell interfaces along the transport pathway and it is suggested that in intact plants auxin transport is entirely symplastic.  相似文献   

19.
The photosynthetic apparatus of Synechocystis sp. PCC 6714 cells grown chemoheterotrophically (dark with glucose as a carbon source) and photoautotrophically (light in a mineral medium) were compared. Dark-grown cells show a decrease in phycocyanin content and an even greater decrease in chlorophyll content with respect to light-grown cells. Analysis of fluorescence emission spectra at 77 K and at 20 °C, of dark- and light-grown cells, and of phycobilisomes isolated from both types of cells, indicated that in darkness the phycobiliproteins were assembled in functional phycobilisomes (PBS). The dark synthesized PBS, however, were unable to transfer their excitation energy to PS II chlorophyll. Upon illumination of dark-grown cells, recovery of photosynthetic activity, pigment content and energy transfer between PBS and PS II was achieved in 24–48 h according to various steps. For O2 evolution the initial step was independent of protein synthesis, but the later steps needed de novo synthesis. Concerning recovery of PBS to PS II energy transfer, light seems to be necessary, but neither PS II functioning nor de novo protein synthesis were required. Similarly, light, rather than functional PS II, was important for the recovery of an efficient energy transfer in nitrate-starved cells upon readdition of nitrate. In addition, it has been shown that normal phycobilisomes could accumulate in a Synechocystis sp. PCC 6803 mutant deficient in Photosystem II activity.Abbreviations APC allophycocyanin - CAP chloroamphenicol - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CP-47 chlorophyll-binding Photosystem II protein of 47 kDa - EF exoplasmic face - PBS phycobilisome - PC phycocyanin - PS Photosystem  相似文献   

20.
The incorporation of radioactive aminolevulinic acid (ALA) into chlorophyll (Chl) a and b , as well as protochlorophyllide (Pchlide) in light-grown barley seedlings ( Hordeum vulgare L. cv. Clipper) transferred to darkness is demonstrated.
In the experiments described, 6-day-old, glasshouse-grown seedlings were transferred to darkness and incubated in [14C]- or [3H]- ALA for 18 h.
Chl a and b were extracted and purified to constant specific radioactivity by HPLC and TLC of their magnesium-free derivatives, pheophytin a and b . The presence of label in the tetrapyrrole ring of the Chls was established by removal of the phytol chain by alkaline hydrolysis and determination of the specific radioactivity of the chlorin e 6 and rhodin g 7 derivatives.
Barley seedlings that had been grown in darkness for 5 days, transferred to light for 20 h, and then returned to darkness in the presence of radioactive ALA also incorporated label into Chl. However, this was only apparent in intact seedlings. Excised leaves from greened etiolated plants did not incorporate ALA into Chl in darkness. This was consistent with the finding of Apel et al. (K. Apel, M. Motzkus and K. Dehesh, 1984. Planta 161: 550–554) and may account for their failure to obtain evidence for a light-independent protochlorophyllide reductase in greening barley.
Although the incorporation of ALA into Chl compared to Pchlide was slight (5%), the presence of label in the tetrapyrrole nucleus of Chl a and b is unequivocal evidence of a light-independent pathway of Chl biosynthesis in barley that has been exposed to light during development. Limited entry of exogenous labelled ALA into the precursor pools leading to the dark reduction of Pchlide is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号