首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ashida H  Maskos K  Li SC  Li YT 《Biochemistry》2002,41(7):2388-2395
In contrast to the beta-linked GlcNAc, the alpha-linked GlcNAc has not been commonly found in glycoconjugates. We have recently revealed the presence of an unusual endo-beta-galactosidase (Endo-beta-Gal(GnGa)) in Clostridium perfringens capable of releasing GlcNAcalpha1-->4Gal from glycans expressed in the gastric mucous cell-type mucin [Ashida, H., Anderson, K., Nakayama, J., Maskos, K., Chou, C.-W., Cole, R. B., Li, S.-C., and Li, Y.-T. (2001) J. Biol. Chem. 276, 28226-28232]. To characterize Endo-beta-Gal(GnGa), we have cloned its gene, gngC, from the genomic DNA library prepared from C. perfringens ATCC10543. The gene encodes 420 amino acid residues including a 17-residue signal peptide at the N-terminus. Using pUC18, we were able to prepare 25 mg of the fully active and pure recombinant Endo-beta-Gal(GnGa) from 1 L of Escherichia coli DH5alpha culture, which was 170 times higher than that produced by the original clostridial strain. Endo-beta-Gal(GnGa) shares a low but significant sequence similarity with two other endo-beta-galactosidases (16-21% amino acid identity). It also shows some similarity with bacterial 1,3-1,4-beta-glucan 4-glucanohydrolases of the glycoside hydrolase family 16. Endo-beta-Gal(GnGa) was found to contain the EXDX(X)E sequence (Glu-168 to Glu-173), that has been identified as the catalytic motif of families 16 and 7 retaining glycoside hydrolases. We have used site-directed mutagenesis to show that Glu-168 and Glu-173 were essential for the Endo-beta-Gal(GnGa) activity. By NMR spectroscopy, Endo-beta-Gal(GnGa) was found to act as a retaining enzyme.  相似文献   

2.
Wu AM  Wu JH  Tsai MS  Herp A 《Life sciences》2000,66(26):2571-2581
The root of Trichosanthes kirilowii, which has been used as Chinese folk medicine for more than two thousand years, contains a Gal specific lectin (TKA). In order to elucidate its binding roles, the carbohydrate specificities of TKA were studied by enzyme linked lectinosorbent assay (ELLSA) and by inhibition of lectin-glycoform binding. Among glycoproteins (gp) tested, TKA reacted strongly with complex carbohydrates with Galbeta1-->4GlcNAc clusters as internal or core structures (human blood group ABH active glycoproteins from human ovarian cyst fluids, hog gastric mucin, and fetuin), porcine salivary glycoprotein and its asialo product, but it was inactive with heparin and mannan (negative control). Of the sugar inhibitors tested for inhibition of binding, Neu5Ac alpha2-->3/6Galbeta1-->4Glc was the best and about 4, 14.6 and 27.7 times more active than Galbeta1-->4GlcNAc(II), Galbeta1-->3GalNAc(T) and Gal, respectively. From these results, it is suggested that this agglutinin is specific for terminal or internal polyvalent Galbeta1-->4GlcNAcbeta1-->, terminal Neu5Ac alpha2-->3/6Galbeta1-->4Glc and cluster forms of Galbeta1-->3GalNAc alpha residues. The unusual affinity of TKA for terminal and internal Galbeta1-->glycotopes may be used to explain the possible attachment roles of this agglutinin in this folk medicine to target cells.  相似文献   

3.
An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  相似文献   

4.
Novel chromogenic substrates for endo-beta-galactosidase were designed on the basis of the structural features of keratan sulfate. Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (2), which consists of two repeating units of N-acetyllactosamine, was synthesized enzymatically by consecutive additions of GlcNAc and Gal residues to p-nitrophenyl beta-N-acetyllactosaminide. In a similar manner, GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (1), GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (3), Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (4), Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (5), and Galbeta1-6GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (6) were synthesized as analogues of 2. Endo-beta-galactosidases released GlcNAcbeta-pNP or Glcbeta-pNP in an endo-manner from each substrate. A colorimetric assay for endo-beta-galactosidase was developed using the synthetic substrates on the basis of the determination of p-nitrophenol liberated from GlcNAcbeta-pNP or Glcbeta-pNP formed by the enzyme through a coupled reaction involving beta-N-acetylhexosaminidase (beta-NAHase) or beta-d-glucosidase. Kinetic analysis by this method showed that the value of Vmax/Km of 2 for Escherichia freundii endo-beta-galactosidase was 1.7-times higher than that for keratan sulfate, indicating that 2 is very suitable as a sensitive substrate for analytical use in an endo-beta-galactosidase assay. Compound 1 still acts as a fairly good substrate despite the absence of a Gal group in the terminal position. In addition, the hydrolytic action of the enzyme toward 2 was shown to be remarkably promoted compared to that of 4 by the presence of a 2-acetamide group adjacent to the p-nitrophenyl group. This was the same in the case of a comparison of 1 and 3. Furthermore, the enzyme also catalysed a transglycosylation on 1 and converted it into GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (9) and GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (10) as the major products, which have N-acetyllactosamine repeating units.  相似文献   

5.
Galalpha1-3Gal is the major xenoantigenic epitope responsible for hyperacute rejection upon pig to human xenotransplantation. Endo-beta-galactosidase C from Clostridium perfringens destroys the antigenic epitope by cleaving the beta-galactosidic linkage in the Galalpha1-3Galbeta1-4GlcNAc structure. Based on partial peptide sequences of the enzyme, we molecularly cloned the enzyme gene, which encodes a protein with a predicted molecular mass of about 93 kDa. The deduced protein sequence of the enzyme has limited homology in the C-terminal half with endo-beta-galactosidase from Flavobacterium keratolyticus and beta-1,3-glucanases. The enzyme expressed in Escherichia coli removed the alpha-galactosyl epitope nearly completely from pig erythrocytes and from pig aortic endothelial cells. The enzyme-treated endothelial cells in culture were greatly reduced in cell surface antigens, which were recognized by IgM, IgG, or IgA in human sera, and became much less susceptible to complement-mediated cytotoxicity caused by human sera. When the pig kidney was perfused with the enzyme, the vascular endothelial cells became virtually devoid of the alpha-galactosyl epitope, with concomitant decrease in binding to IgM in human plasma. These results demonstrated that the recombinant endo-beta-galactosidase C is a valuable aid in xenotransplantation.  相似文献   

6.
Sulfated glycoconjugates regulate biological processes such as cell adhesion and cancer metastasis. We examined the acceptor specificities and kinetic properties of three cloned Gal:3-O-sulfotransferases (Gal3STs) ST-2, ST-3, and ST-4 along with a purified Gal3ST from colon carcinoma LS180 cells. Gal3ST-2 was the dominant Gal3ST in LS180. While the mucin core-2 structure Galbeta1,4GlcNAcbeta1,6(3-O-MeGalbeta1,3)GalNAcalpha-O-Bn (where Bn is benzyl) and the disaccharide Galbeta1,4GlcNAc served as high affinity acceptors for Gal3ST-2 and Gal3ST-3, 3-O-MeGalbeta1,4GlcNAcbeta1,-6(Galbeta1,3)GalNAcalpha-O-Bn and Galbeta1,3GalNAcalpha-O-Al (where Al is allyl) were efficient acceptors for Gal3ST-4. The activities of Gal3ST-2 and Gal3ST-3 could be distinguished with the Globo H precursor (Galbeta1,3GalNAcbeta1,3Galalpha-O-Me) and fetuin triantennary asialoglycopeptide. Gal3ST-2 acted efficiently on the former, while Gal3ST-3 showed preference for the latter. Gal3ST-4 also acted on the Globo H precursor but not the glycopeptide. In support of the specificity, Gal3ST-2 activity toward the Galbeta1,4GlcNAcbeta unit on mucin core-2 as well as the Globo H precursor could be inhibited competitively by Galbeta1,4GlcNAcbeta1,6(3-O-sulfoGalbeta1,3)GalNAcalpha-O-Bn but not 3-O-sulfoGalbeta1,-4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-Bn. Remarkably these sulfotransferases were uniquely specific for sulfated substrates: Gal3ST-3 utilized Galbeta1,4(6-O-sulfo)-GlcNAcbeta-O-Al as acceptor, Gal3ST-2 acted efficiently on Galbeta1,3(6-O-sulfo)GlcNAcbeta-O-Al, and Gal3ST-4 acted efficiently on Galbeta1,3(6-O-sulfo)GalNAcalpha-O-Al. Mg(2+), Mn(2+), and Ca(2+) stimulated the activities of Gal3ST-2, whereas only Mg(2+) augmented Gal3ST-3 activity. Divalent cations did not stimulate Gal3ST-4, although inhibition was noted at high Mn(2+) concentrations. The fine substrate specificities of Gal3STs indicate a distinct physiological role for each enzyme.  相似文献   

7.
Gastric gland mucous cells produce class III mucin, which is also found in Brunner's glands and mucous glands along the pancreaticobiliary tract, and in metaplasia and adenocarcinomas differentiating towards gastric mucosa. Recently, we showed that class III mucin possesses GlcNAcalpha1-->4Galbeta-->R, formed by alpha1,4-N-acetylglucosaminyltransferase (alpha4GnT). Examining the tissue-specific expression of mucin epitopes is useful to clarify cell-lineage differentiation and to identify the site of origin of metastatic carcinomas in histological specimens. Formalin-fixed, paraffin-embedded tissue sections from esophagus, stomach, colon, liver, pancreas, lung, kidney, prostate, breast, and salivary gland resected for carcinoma, as well as salivary gland adenoma, colon adenoma, and metastatic adenocarcinoma of lymph nodes from stomach, pancreas, colon, and breast, were immunostained for MUC6, alpha4GnT, and GlcNAcalpha1-->4Galbeta-->R. These were all expressed in normal, metaplastic, and adenocarcinoma tissues of stomach, pancreas, and bile duct, and in pulmonary mucinous bronchioloalveolar carcinomas. Cells expressing alpha4GnT uniformly expressed GlcNAcalpha1-->4Galbeta-->R. Only MUC6 was expressed in normal salivary glands, pancreas, seminal vesicles, renal tubules, and colon adenomas, and in normal tissue and adenocarcinomas of prostate and breast. No tissues showed immunoreactivity for alpha4GnT alone. Immunohistochemistry (IHC) profiles were similar for metastatic carcinomas and primary carcinoma tissues. The IHC profiles for MUC6, alpha4GnT, and GlcNAcalpha1-->4Galbeta-->R may be diagnostically relevant.  相似文献   

8.
alpha1,4-N-acetylglucosaminyltransferase (alpha4GnT) is a glycosyltransferase that mediates transfer of GlcNAc to betaGal residues with alpha1,4-linkage, forming GlcNAcalpha1--> 4Galbeta-->R structures. In normal human tissues, glycoproteins having GlcNAcalpha1-->4Galbeta-->R structures at non-reducing terminals are exclusively limited to the mucins secreted from glandular mucous cells of gastric mucosa, Brunner's gland of duodenum, and accessory gland of pancreaticobiliary tract. Recently, we have isolated a cDNA encoding human alpha4GnT by expression cloning. Although alpha4GnT plays a key role in producing this unique glycan in vitro, the actual localization of alpha4GnT was not determined. In this study we examined the localization of alpha4GnT in various human tissues, including gastrointestinal mucosa, using a newly developed antibody against human alpha4GnT. The specificity of the antibody was confirmed by analyses of human gastric adenocarcinoma AGS cells transfected by alpha4GnT cDNA. Expression of alpha4GnT was largely associated with the Golgi region of mucous cells that produce the mucous glycoproteins having GlcNAcalpha1-->4Galbeta-->R, such as the glandular mucous cells of stomach and Brunner's gland. An immunoprecipitation experiment disclosed that two distinct mucin proteins, MUC5AC and MUC6 present in gastric mucin, carried the GlcNAcalpha1-->4Galbeta-->R structures. These results indicate that alpha4GnT is critical to form the mucous glycoproteins having GlcNAcalpha1-->4Galbeta-->R on MUC6 and MUC5AC in vivo.(J Histochem Cytochem 49:587-596, 2001)  相似文献   

9.
Aplysia gonad lectin (AGL), which has been shown to stimulate mitogenesis in human peripheral lymphocytes, to suppress tumor cells, and to induce neurite outgrowth and improve cell viability in cultured Aplysia neurons, exhibits a peculiar galacturonic acid/galactose specificity. The carbohydrate binding site of this lectin was characterized by enzyme-linked lectino-sorbent assay and by inhibition of AGL-glycan interactions. Examination of the lectin binding with 34 glycans revealed that it reacted strongly with the following glycoforms: most human blood group precursor (equivalent) glycoproteins (gps), two Galalpha1-->4Gal-containing gps, and two d-galacturonic acid (GalUA)-containing polysaccharides (pectins from apple and citrus fruits), but poorly with most human blood group A and H active and sialylated gps. Among the GalUA and mammalian saccharides tested for inhibition of AGL-glycan binding, GalUA mono- to trisaccharides were the most potent ones. They were 8.5 x 10(4) times more active than Gal and about 1.5 x 10(3) more active than the human blood group P(k) active disaccharide (E, Galalpha1-->4Gal). This disaccharide was 6, 28, and 120 times more efficient than Galbeta1-->3GlcNAc(I), Galbeta1-->3GalNAc(T), and Galbeta1--> 4GlcNAc (II), respectively, and 35 and 80 times more active than melibiose (Galalpha1-->6Glc) and human blood group B active disaccharide (Galalpha1-->3Gal), respectively, showing that the decreasing order of the lectin affinity toward alpha-anomers of Gal is alpha1-->4 > alpha1-->6 > alpha1-->3. From the data provided, the carbohydrate specificity of AGL can be defined as GalUAalpha1-->4 trisaccharides to mono GalUA > branched or cluster forms of E, I, and II monomeric E, I, and II, whereas GalNAc is inactive.  相似文献   

10.
The culture medium of Diplococcus pneumoniae contains enzymic activity that cleaves Galbeta1 leads to 3GalNAc from desialized human erythrocyte membrane glycoprotein. The enzyme was purified 180-fold by ammonium sulfate fractionation, gel filtration through a Sephadex G-200 column, and DEAE A-25 Sephadex chromatography. The purified enzyme liberates Galbeta1 leads to 3GalNAc from glycopeptides and glycoproteins with Galbeta1 leads to 3GalNAcalpha1 leads to Ser and Thr moieties. The optimum pH of this enzyme is 6.0. Using glycopeptides obtained by trypsin digestion of human erythrocyte membrane glycoprotein as a substrate, a Km of 0.20 mM (on the basis of the amount of Galbeta1 leads to 3GalNAc residues) was obtained. So far, the enzyme appears to have a strict specificity for Galbeta1 leads to 3GalNAcalpha1 leads to Ser and Thr structures, because no oligosaccharides larger than trisaccharides were liberated from porcine submaxillary mucin.  相似文献   

11.
A series of oligosaccharides has been isolated from the keratan sulphate peptidoglycan (3 M NaCl fraction) of bovine cornea after digestion with the endo-beta-galactosidase of Bacteroides fragilis. Structural information on the major oligosaccharides was obtained from (a) their susceptibilities to endo-beta-galactosidase before and after desulphation, (b) their elution positions on a column of Bio-Gel P-4 and retention times on a high-performance anion-exchange column and (c) negative-ion fast-atom-bombardment mass spectrometry. More than 75% of the oligosaccharides were sulphated unbranched poly(N-acetyllactosamine) sequences, (-3/4GlcNAc beta 1-3Gal beta 1-)n, and approximately 3% was the neutral disaccharide, GlcNAc beta 1-3Gal. The sulphated disaccharide, GlcNAc-SO-3 beta 1-3Gal, accounted for almost 35% of the oligosaccharide material while 40% consisted of four oligosaccharides, unbranched tetra-, hexa-, octa- and decasaccharides of poly(N-acetyllactosamine) type, having 3, 5, 7 and 9 sulphate residues respectively. Proton nuclear magnetic resonance studies at 500 MHz (Hounsell, E. F., et al. following paper in this journal) have shown that a sulphate residue is attached to the C-6 position of each N-acetylglucosamine and each internal galactose residue of these four oligosaccharides which express to varying degrees the antigenic determinants recognised by three monoclonal antibodies to keratan sulphate (Mehmet, H. et al., paper which follows the next paper in this journal).  相似文献   

12.
A new type of endo-beta-galactosidase acting on the linkage region of peptidochondroitin sulfate was isolated from the mid-gut gland of the mollusk Patinopecten. The purification procedure included ammonium sulfate precipitation, Sephacryl S-200HR gel filtration, DEAE-Sephacel chromatography, and TSKgel Phenyl-5PW RP high performance liquid chromatography. The purified enzyme was free from exoglycosidases, sulfatases, and phosphatases. The specificity of the enzyme was as follows. 1) It acted on the internal galactoside linkage of sugar chains; 2) it specifically hydrolyzed the galactosylgalactose (Gal beta 1-3Gal) linkage, but not the galactosylxylose (Gal beta 1-4Xyl) linkage in the linkage region of peptidoglycans; 3) the enzyme activity was unaffected by the type of glycosaminoglycan, chondroitin sulfate, dermatan sulfate or heparan sulfate used as a substrate; 4) keratan sulfate and some oligosaccharides from glycolipid were not degraded by the enzyme. These properties of the endo-beta-galactosidase characterize it as a new endo-beta-galactosidase with unique specificity.  相似文献   

13.
In mammals, α-linked GlcNAc is primarily found in heparan sulfate/heparin and gastric gland mucous cell type mucin. α-N-acetylglucosaminidases (αGNases) belonging to glycoside hydrolase family 89 are widely distributed from bacteria to higher eukaryotes. Human lysosomal αGNase is well known to degrade heparin and heparan sulfate. Here, we reveal the substrate specificity of αGNase (AgnC) from Clostridium perfringens strain 13, a bacterial homolog of human αGNase, by chemically synthesizing a series of disaccharide substrates containing α-linked GlcNAc. AgnC was found to release GlcNAc from GlcNAcα1,4Galβ1pMP and GlcNAcα1pNP substrates (where pMP and pNP represent p-methoxyphenyl and p-nitrophenyl, respectively). AgnC also released GlcNAc from porcine gastric mucin and cell surface mucin. Because AgnC showed no activity against any of the GlcNAcα1,2Galβ1pMP, GlcNAcα1,3Galβ1pMP, GlcNAcα1,6Galβ1pMP, and GlcNAcα1,4GlcAβ1pMP substrates, this enzyme may represent a specific glycosidase required for degrading α-GlcNAc-capped O-glycans of the class III mucin secreted from the stomach and duodenum. Deletion of the C-terminal region containing several carbohydrate-binding module 32 (CBM32) domains significantly reduced the activity for porcine gastric mucin; however, activity against GlcNAcα1,4Galβ1pMP was markedly enhanced. Dot blot and ELISA analyses revealed that the deletion construct containing the C-terminal CBM-C2 to CBM-C6 domains binds strongly to porcine gastric mucin. Consequently, tandem CBM32 domains located near the C terminus of AgnC should function by increasing the affinity for branched or clustered α-GlcNAc-containing glycans. The agnC gene-disrupted strain showed significantly reduced growth on the class III mucin-containing medium compared with the wild type strain, suggesting that AgnC might have an important role in dominant growth in intestines.  相似文献   

14.
We have isolated an endo-beta-galactosidase designated E-ABase from Clostridium perfringens ATCC 10543 capable of liberating both the A trisaccharide (A-Tri; GalNAcalpha1-->3(Fucalpha1-->2)Gal) and B trisaccharide (B-Tri; Galalpha1-->3(Fucalpha1-->2)Gal) from glycoconjugates containing blood group A and B glycotopes, respectively. We have subsequently cloned the gene (eabC) that encodes E-ABase from this organism. This gene was found to be identical to the CPE0329 gene of C. perfringens strain 13, whose product was labeled as a hypothetical protein (Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., and Hayashi, H. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 996-1001). Since the amino acid sequence of E-ABase does not bear detectable similarity to any of the 97 existing families of glycoside hydrolases, we have proposed to assign this unusual enzyme to a new family, GH98. We also expressed eabC in Escherichia coli BL21(DE3) and obtained 27 mg of fully active recombinant E-ABase from 1 liter of culture. Recombinant E-ABase not only destroyed the blood group A and B antigenicity of human type A and B erythrocytes, but also released A-Tri and B-Tri from blood group A(+)- and B(+)- containing glycoconjugates. The structures of A-Tri and B-Tri liberated from A(+) porcine gastric mucin and B(+) human ovarian cyst glycoprotein were established by NMR spectroscopy. The unique specificity of E-ABase should make it useful for studying the structure and function of blood group A- and B-containing glycoconju-gates as well as for identifying other glycosidases belonging to the new GH98 family.  相似文献   

15.
Enzymatic synthesis of GlcNAc-terminated poly-N-acetyllactosamine beta-glycosides GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(n)Galbeta1,4GlcNAcbeta-pNP (n=1-4) was demonstrated using a transglycosylation reaction of Escherichia freundii endo-beta-galactosidase. The enzyme catalyzed a transglycosylation reaction on GlcNAcbeta1,3Galbeta1,4GlcNAcbeta-pNP (1), which served both as a donor and an acceptor, and converted 1 into p-nitrophenyl beta-glycosides GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(1)Galbeta1,4GlcNAcbeta-pNP (2), GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(2)Galbeta1,4GlcNAcbeta-pNP (3), GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(3)Galbeta1,4GlcNAcbeta-pNP (4) and GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(4)Galbeta1,4GlcNAcbeta-pNP (5). When 2 was used as an initial substrate, it led to the preferential synthesis of nonasaccharide beta-glycoside 4 to heptasaccharide beta-glycoside 3. This suggests that 4 is directly synthesized by transferring the tetrasaccharide unit GlcNAcbeta1,3Galbeta1,4GlcNAcbeta1,3Gal to nonreducing end GlcNAc residue of 2 itself. The efficiency of production of poly-N-acetyllactosamines by E. freundii endo-beta-galactosidase was significantly enhanced by the addition of BSA and by a low-temperature condition. Resulting 2 and 3 were shown to be useful for studying endo-beta-galactosidase-catalyzed hydrolytic and transglycosylation reactions.  相似文献   

16.
The substrate requirements, linkage specificity, and kinetic mechanism of a pure sialyltransferase from porcine submaxillary glands have been examined. The enzyme transfers sialic acid from the donor nucleotide, CMP-NeuAc, into the sequence NeuAcalpha2 leads to 3Galbeta1 leads to 3GalNAc, which is found in both glycoproteins and gangliosides. It forms only the alpha2 leads to 3 linkage with the disaccharide Gal/beta1 leads to 3GalNAc or antifreeze glycoprotein, which, along with asialoglycoproteins containing the sequence Gal/beta1 leads to 3GalNAcalpha1 leads to O-Thr/Ser, are the best acceptor substrates. Low molecular weight galactosides linked beta1 leads to 3 to glycose residues other than N-acetylgalactosamine are poor acceptors with relatively high Km values, while those in beta1 leads to 4 or beta1 leads to 6 linkages have both high Km and low Vmax. With glycoprotein and ganglioside acceptors this substrate specificity appears to be even more strict, with the sequence Gal/beta1 leads to 3GalNAc serving as the exclusive acceptor. Thus the present enzyme is not responsible either for the sequence, NeuAcalpha2 leads to 3Galbeta1 leads to 4GlcNAc, found in the asparagine-linked chains of certain glycoproteins, or for the synthesis of hematoside, NeuAcalpha2 leads to 3Galbeta1 leads to 4Glcbeta1 leads to 1Cer. Initial rate kinetic studies, with and without inhibitors, suggest that the transferase has an equilibrium random order mechanism.  相似文献   

17.
Wu AM  Wu JH  Lin LH  Lin SH  Liu JH 《Life sciences》2003,72(20):2285-2302
Artocarpus integrifolia agglutinin (Jacalin) from the seeds of jack fruits has attracted considerable attention for its diverse biological activities and has been recognized as a Galbeta1-->3GalNAc (T) specific lectin. In previous studies, the information of its binding was limited to the inhibition results of monosaccharides and several T related disaccharides, but its interaction with other carbohydrate structural units occurring in natural glycans has not been characterized. For this reason, the binding profile of this lectin was studied by enzyme linked lectinosorbent assay (ELLSA) with our glycan/ligand collection. Among glycoproteins (gps) tested for binding, high density of multi-Galbeta1-->3GalNAcalpha1--> (mT(alpha)) and GalNAcalpha1-->Ser/Thr (mTn) containing gps reacted most avidly with Jacalin. As inhibitors expressed as nanograms yielding 50% inhibition, these mT(alpha) and mTn containing glycans were about 7.1 x 10(3), 4.0 x 10(5), and 7.8 x 10(5) times more potent than monomeric T(alpha), GalNAc, and Gal. Of the sugars tested and expressed as nanomoles for 50% inhibition, Tn containing peptides, T(alpha), and the human P blood group active disaccharide (P(alpha), GalNAcbeta1-->3Galalpha1-->) were the best and about 283 times more active than Gal. We conclude that the most potent ligands for this lectin are mTn, mT, and possibly P(alpha) glycotopes, while GalNAcbeta1-->4Galbeta1-->, GalNAcalpha1-->3Gal, GalNAcalpha1-->3GalNAc, and Galalpha1-->3Gal determinants were poor inhibitors. Thus, the overall binding profile of Jacalin can be defined in decreasing order as high density of mTn, and mT(alpha) > simple Tn cluster > monomeric T(alpha) > monomeric P(alpha) > monomeric Tn > monomeric T > GalNAc > Gal > Methylalpha1-->Man z.Gt; Man and Glc (inactive). Our finding should aid in the selection of this lectin for biological applications.  相似文献   

18.
Mucin, a major component of mucus, is a highly O-glycosylated, high-molecular-mass glycoprotein extensively involved in the physiology of gastrointestinal mucosa. To detect and characterize mucins derived from site-specific mucous cells, we developed a monoclonal antibody, designated PGM34, by immunizing a mouse with purified pig gastric mucin. The reactivity of PGM34 with mucin was inhibited by periodate treatment of the mucin, but not by trypsin digestion. This suggests that PGM34 recognizes the carbohydrate portion of mucin. To determine the epitope, oligosaccharide-alditols obtained from pig gastric mucin were fractionated by successive gel-filtration, ion-exchange, and normal-phase HPLC, and tested for reactivity with PGM34. Two purified oligosaccharide-alditols that reacted with PGM34 were obtained. Their structures were determined by NMR spectroscopy as Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Fucalpha1-2Galbeta1-3)GalNAc-ol and Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta1-6(Galbeta1-3)GalNAc-ol. None of the defucosylated or desulfated forms of these oligosaccharides reacted with PGM34. Thus, the epitope of PGM34 was determined as the Fucalpha1-2Galbeta1-4GlcNAc(6SO(3)H)beta- sequence. Immunohistochemical examination of rat gastrointestinal tract showed that PGM34 stained surface mucous cells close to the generative cell zone in the gastric fundus and goblet cells in the small intestine, but only slightly stained antral mucous cells in the stomach. These data, taken together, show that PGM34 is a very useful tool for elucidating the role of mucins with characteristic sulfated oligosaccharides.  相似文献   

19.
Previously, we reported the expression of chimeric lipopolysaccharides (LPS) in Escherichia coli strain JM109 (a K-12 strain) transformed with plasmids containing Haemophilus influenzae lipooligosaccharide synthesis genes (lsg) (Abu Kwaik, Y., McLaughlin, R. E., Apicella, M. A., and Spinola, S. M. (1991) Mol. Microbiol. 5, 2475-2480). In this current study, we have analyzed the O-deacylated LPS and free oligosaccharides from three transformants (designated pGEMLOS-4, pGEMLOS-5, and pGEMLOS-7) by matrix-assisted laser desorption ionization, electrospray ionization, and tandem mass spectrometry techniques, along with composition and linkage analyses. These data show that the chimeric LPS consist of the complete E. coli LPS core structure glycosylated on the 7-position of the non-reducing terminal branch heptose with oligosaccharides from H. influenzae. In pGEMLOS-7, the disaccharide Gal1--> 3GlcNAc1--> is added, and in pGEMLOS-5, the structure is extended to Gal1-->4GlcNAc1-->3Gal1-->3GlcNAc1-->. PGEMLOS-5 LPS reacts positively with monoclonal antibody 3F11, an antibody that recognizes the terminal disaccharide of lacto-N-neotetraose. In pGEMLOS-4 LPS, the 3F11 epitope is apparently blocked by glycosylation on the 6-position of the terminal Gal with either Gal or GlcNAc. The biosynthesis of these chimeric LPS was found to be dependent on a functional wecA (formerly rfe) gene in E. coli. By using this carbohydrate expression system, we have been able to examine the functions of the lsg genes independent of the effects of other endogenous Haemophilus genes and expressed proteins.  相似文献   

20.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号