首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin and molecular structure of the midget chromosome that is retained in a common wheat with rye cytoplasm, were studied by using fluorescent in situ hybridization (FISH). FISH with biotinylated rye genomic DNA as a probe clearly showed that the midget chromosome had originated from certain part(s) of rye chromosome(s). The midget chromosome did not possess sequences similar to wheat rDNA nor to a rye telomeric sequence with a 350 bp repeat unit. However, another repetitive sequence (120 bp family) of rye was found to occur at one end of the midget chromosome. The telomeric repeat sequences from Arabidopsis thaliana cross-hybridized to both ends of the midget chromosome as well as to wheat chromosomes. From the results obtained in this and previous studies, it is assumed that the midget chromosome originated from part of a rye chromosome, most likely the centromeric region of chromosome 1R, and that the telomeric sequences were synthesized de novo.by R. Appels  相似文献   

2.
Macrostructure of the tomato telomeres.   总被引:23,自引:3,他引:20  
The macrostructure of the tomato telomeres has been investigated by in situ hybridization, genomic sequencing, and pulsed-field gel electrophoresis. In situ hybridizations with a cloned telomeric sequence from Arabidopsis thaliana indicated that the telomeric repeat of tomato cross-hybridizes with that of Arabidopsis and is located at all telomeres. Bal31 digestion kinetics confirmed that the tomato telomeric repeat represents the outermost DNA sequence of each tomato chromosome. Genomic sequencing of enriched tomato telomeric sequences, using primers derived from the Arabidopsis sequence, revealed that the consensus sequence of the tomato telomeric repeat is TT(T/A)AGGG compared with the Arabidopsis consensus sequence of TTTAGGG. Furthermore, as shown by pulsed-field gel electrophoresis, the telomeric repeat of tomato is separated by not more than a few hundred kilobases from a previously described 162-base pair satellite DNA repeat of tomato (TGR I) at 20 of the 24 telomeres. Together, these sequences are found in the heterochromatic terminal knob observed in pachytene chromosomes. Therefore, these two repeats determine the structure of 20 of the 24 tomato chromosome ends over approximately 2% of the total chromosome length.  相似文献   

3.
4.
Bacteriophage lambda clones containing Theileria parva genomic DNA derived from two different telomeres were isolated and the nucleotide sequences of the telomeric repeats and adjacent telomere-associated (TAS) DNA were determined. The T.parva telomeric repeat sequences, a tandem array of TTTTAGGG or TTTAGGG interspersed with a few variant copies, showed a high degree of sequence identity to those of the photosynthetic algae Chlamydomonas reinhardtii (97% identity) and Chlorella vulgaris (87.7% identity) and the angiosperm Arabidopsis thaliana (84.4% identity). Unlike most organisms which have been studied, no significant repetitive sequences were found in the nucleotide sequences of TAS DNA located centromere-proximal to the telomeric repeats. Restriction mapping and hybridisation analysis of lambda EMBL3 clones containing 16 kilobases of TAS DNA derived from one telomere suggested that they did not contain long regions of repetitive DNA. The cloned TAS DNAs were mapped to T.parva Muguga genomic SfiI fragments 8 and 20, which are located at opposite ends of the largest T.parva chromosome. A 126 bp sequence located directly centromere-proximal to the telomeric repeats was 94% identical between the two cloned telomeres. The conserved 126 bp sequence was present on all T.parva Muguga telomeric SfiI fragments.  相似文献   

5.
6.
We present a strategy for the cloning of DNA sequences adjacent to the tandemly repeated DNA sequence (TTAGGG)n. Sequence analysis of 14 independently isolated clones revealed the presence of non-repetitive sequences immediately adjacent to or flanked by blocks of the simple repeat (TTAGGG)n. In addition, we provide sequence information on two previously undescribed tandemly repeated sequences, including a 9 bp repeat and a modification of the (TTAGGG)n repeat. Using different mapping approaches six sub-clones, free of the TTAGGG repeat, were assigned to a single human chromosome. Moreover, in situ hybridization mapped one of these subclones, G2 - 1H, definitively to the telomeric band on chromosome 4q. However, Bal 31 insensitivity suggests a location in a more subterminal region. All the (TTAGGG)n-adjacent unique sequences tested are highly conserved among primates but are not present in other mammalian species. Identification and mapping of TTAGGG-adjacent sequences will provide a refined insight into the genomic organization of the (TTAGGG)n repeat. The isolation of chromosome specific TTAGGG-adjacent sequences from subtelomeric regions of all human chromosomes will serve as important end points for the genetic maps and will be useful for the molecular characterization of chromosomal rearrangements involving telomeres.  相似文献   

7.
A Hind III-generated fragment of wheat embryo nuclear DNA has been cloned and sequenced. The cloned fragment corresponds to a 1241 bp long, moderately repeated (60 000 copies/genome) segment of the genomic DNA. The repeat is AT-rich (67%), contains an open reading frame for 151 amino acids and several nucleotide blocks resembling the consensus domain of autonomously replicating sequences. Southern blot hybridization analyses indicate that the repeat is scattered through the wheat genome. A sequence homologous to this repeat occurs also in rye embryo nuclear DNA where it shows the same dispersion pattern as that observed for the wheat repeat.  相似文献   

8.
A crude nuclear fraction of resting wheat embryos was used as the source of putative plant minichromosomes: unique DNA sequences the size of genes and flanked by telomere-type repeats. Preliminary separation of low-molecular-weight DNA species from chromosomal DNA (Hirt's method), velocity sedimentation, and isopycnic centrifugation were followed by PCR amplification of minichromosome-like sequences. The most abundant PCR product was cloned and sequenced. In addition to telomeric repeats (defined by a PCR primer), which were the expected sequences, the linear DNA molecule (637 pb) contained an ARS-like element, RAP1-binding site, and two relatively long ORFs. The whole sequence seems to represent a naturally occurring plant minichromosome.  相似文献   

9.
A tandemly repeated sequence isolated from a clone (HAG004N15) of a nebulized genomic DNA library of sunflower (Helianthus annuus L., 2n = 34) was characterized and used to study the chromosome complement of sunflower. HAG004N15 repeat units (368 bp in length) were found to be highly methylated, and their copy number per haploid (1C) genome was estimated to be 7800. After in situ hybridization of HAG004N15 repeats onto chromosome spreads, signals were observed at the end of both chromosome arms in 4 pairs and at the end of only one arm in 8 other pairs. Signals were also observed at the intercalary (mostly subtelomeric) regions in all pairs, in both arms in 8 pairs, and in only one arm in the other 9 pairs. The short arm of 1 pair was labelled entirely. The chromosomal location of ribosomal DNA was also studied by hybridizing the wheat ribosomal probe pTa71. Four chromosome pairs contained ribosomal cistrons at the end of their shorter arm, but a satellite was seen in only 3 pairs. These hybridization patterns were the same in the 3 sunflower lines studied (HA89, RA20031, and HOR). The chromosomal localization of HAG004N15-related sequences allowed all of the chromosome pairs to be distinguished from each other, in spite of small size and similar morphology.  相似文献   

10.
A mouse subtelomeric sequence, ST1, was generated from genomic DNA of the mouse HR9 (129/Sv origin) cell line by the polymerase chain reaction (PCR) using a single telomeric primer. ST1 was cloned and characterized: it is composed of 670 bp of novel DNA sequence flanked on each end by inverted telomeric hexanucleotide repeats (TTAGGG)n. PCR amplification from BALB/c mouse DNA using this single primer gave the same major product. Southern analysis and PCR using internal ST1 primers confirmed that the ST1 sequence is present in mouse genomic DNA. In situ hybridization to metaphase chromosomes of SJL origin mapped ST1 to many, if not every, mouse telomere. PCR experiments using different combinations of the telomeric, minor satellite, and ST1 primers indicated that some ST1 copies are adjacent to minor satellite sequences, that telomeric and ST1 sequences are not generally interspersed with minor satellite sequences,and that ST1 and the minor satellite have a consistent and specific orientation relative to each other and to the telomere.by H.F. Willard  相似文献   

11.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

12.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

13.
Y Ge  M J Wagner  M Siciliano  D E Wells 《Genomics》1992,13(3):585-593
We have characterized alphoid repeat clones derived from a chromosome 8 library. These clones are specific for human chromosome 8, as demonstrated by use of a somatic cell hybrid mapping panel and by in situ hybridization. Hybridization of the clones to HindIII digests of human genomic DNA reveals a complex pattern of fragments ranging in size from 1.3 to greater than 20 kb. One clone, which corresponds in size to the most prevalent genomic HindIII fragment, appears to represent a major higher order repeat in the chromosome 8 centromere. The DNA sequence of this clone reveals a dimeric organization of alphoid monomers. Restriction analysis of two other clones indicates that they are derivatives of this same repeat unit. The chromosome 8 alphoid clones hybridize to EcoRI fragments of genomic DNA ranging up to 1000 kb in length and reveal a high degree of polymorphism between chromosomes. Distribution of higher order repeat units across the centromere was examined by two-dimensional gel electrophoresis. Repeat units of the same size class tended to cluster together in restricted regions of centromeric DNA.  相似文献   

14.
A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA.   总被引:2,自引:0,他引:2  
T Y Wu  R Wu 《Nucleic acids research》1987,15(15):5913-5923
Moderately repetitive DNA sequences are found in the genomes of all eucaryotes that have been examined. We now report the discovery of a novel, transcribed, moderately repetitive DNA sequence in a higher plant which is different from any of the known repetitive DNA sequences from any organism. We isolated a rice cDNA clone which hybridizes to multiple bands on genomic blot analysis. The sequence of this 352 bp cDNA contains four regions of homology to the wheat phenylalanine tRNA, including the polymerase III-type promoter. Unexpectedly, two regions of the same 352 bp sequence also show homology to the wheat 5S RNA sequence. Using the cDNA as a probe, we have isolated six genomic clones which contain long tandem repeats of 355 bp sequence, and have sequenced nine repeat units. Our findings suggest that the rice repetitive sequence may be an amplified pseudogene with sequence homology to both 5S RNA and tRNA, but organized as long tandem repeats resembling 5S RNA genes. This is the first example showing homology between the sequences of a moderately repetitive DNA with unknown function and 5S RNA.  相似文献   

15.
Two cosmids (HRS-1 and HRS-2) containing mouse minor satellite DNA sequences have been isolated from a mouse genomic library. In situ hybridization under moderate stringency conditions to metaphase chromosomes from RCS-5, a tumor cell line derived from the SJL strain, mapped both HRS-1 and HRS-2 to the centromeric region of chromosome 4. Sequence data indicate that these cloned minor satellite DNA sequences have a basic higher order repeat of 180 bp, composed of three diverged 60-bp monomers. Digestion of mouse genomic DNA with several restriction enzymes produces a ladder of minor satellite fragments based on a 120-bp repeat. The restriction enzyme NlaIII (CATG) digests all the minor satellite DNA into three prominent bands of 120, 240, and 360 bp and a weak band of 180 bp. Thus, the majority of minor satellite sequences in the genome are arranged in repeats based on a 120-bp dimer, while the family of minor satellite sequences described here represents a rare variant of these sequences. Our results raise the possibility that there may be other variant families of minor satellites analogous to those of alphoid DNA present in humans.  相似文献   

16.
Long tandem arrays of complex repeat units in Chironomus telomeres.   总被引:8,自引:1,他引:7       下载免费PDF全文
A cloned 340-bp DNA fragment excised by EcoRI from the Chironomus pallividittatus genome has been localized to the telomeres by in situ hybridization as well as to connectives between telomeres. No hybridization was observed in other regions of the chromosomes. Another cloned EcoRI fragment, 525 bp long has also been studied. This represents a partial duplication of the 340-bp sequence. Genomic blot hybridization experiments show that the 340-bp sequence is a representative monomeric unit of tandemly repeated arrays which account for 1.2% of the Chironomus genome, on average 300 kb per telomere. The repeat unit contains two types of subrepeats each present twice per repeat unit. Northern blot hybridization experiments show that the telomere-associated sequences are transcribed into a discrete RNA species approximately 20 kb in size. The evolution of this telomere-associated DNA is discussed.  相似文献   

17.
We explored the ability of S. cerevisiae to utilize heterologous DNA sequences as telomeres by cloning germline (micronuclear) DNA from Tetrahymena thermophila on a linear yeast plasmid that selects for telomere function. The only Tetrahymena sequences that functioned in this assay were (C4A2)n repeats. Moreover, these repeats did not have to be derived from Tetrahymena telomeres, although we show that micronuclear telomeres (like macronuclear telomeres) of Tetrahymena terminate in (C4A2)n repeats. Chromosome-internal restriction fragments carrying (C4A2)n repeats also stabilized linear plasmids and were elongated by yeast telomeric repeats. In one case, the C4A2 repeat tract was approximately 1.5 kb from the end of the genomic Tetrahymena DNA fragment that was cloned, but this 1.5 kb of DNA was missing from the linear plasmid. Thus, yeast can utilize internally located tracts of telomere-like sequences, after the distal DNA is removed. The data provide an example of broken chromo-some healing, and underscore the importance of the telomeric repeat structure for recognition of functional telomeric DNA in vivo.  相似文献   

18.
S T Hu  M K Yang  D F Spandau  C H Lee 《Gene》1987,55(2-3):157-167
The Escherichia coli enterotoxin STII gene is flanked by two repeat sequences, approx. 600 bp each and 8 kb apart. This 9-kb DNA fragment has been shown to transpose as a unit and is thus considered a transposon. It is presently designated as Tn4521. In this study, the two terminal sequences of Tn4521 cloned in pPS1 were localized, isolated, and characterized. The two terminal sequences were found to be composed of IS2 sequences and were in an inverted repeat orientation. However, neither repeat contained a complete IS2. The LTR contained bp 1-722, whereas the RTR contained bp 17-536 and 969-1327, all three of the IS2 sequence.  相似文献   

19.
20.
Several complementary procedures were used to identify and characterize DNA sequences which are repeated within a 44 kilobase (kb) segment of rabbit chromosomal DNA containing four different rabbit β-like globin genes (β1–β4). Cross-hybridization between cloned DNAs from different regions of the gene cluster indicates the presence of a complex array of repeat sequences interspersed with the globin genes. We classified 20 different repeat sequences into five families whose members cross-hybridize. Electron microscopy was used to determine the location, size and relative orientations of many of the repeat sequences. Both direct and inverted repeats were identified, with sizes ranging from 140 to 1400 base pairs (bp). Each of the four closely linked globin genes is flanked by at least one pair of inverted repeats of 140–400 bp, and the entire set of four genes is flanked by an inverted repeat of 1400 bp. Two of the five repeat families contain repeat sequences of different sizes. We found that the smaller sequence elements can occur individually or in association with the larger repeat sequences, suggesting that the larger repeats may be composed of more than one smaller repeat sequence. The restriction fragments containing the intracluster repeats also contain sequences which are repeated many times in total rabbit genomic DNA, but it is not known whether the genomic and intracluster repeats are the same sequences. The results provide the first demonstration of the relationship between single-copy and repetitive DNA sequences in a large segment of chromosomal DNA containing a well characterized set of developmentally regulated genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号