首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.  相似文献   

2.
To clarify evolution and phylogenetic relationships of trypanosome alternative oxidase (AOX) molecules, AOX genes (cDNAs) of the African trypanosomes, Trypanosoma congolense and Trypanosoma evansi, were cloned by PCR. Both AOXs possess conserved consensus motifs (-E-, -EXXH-). The putative amino acid sequence of the AOX of T. evansi was exactly the same as that of T. brucei. A protein phylogeny of trypanosome AOXs revealed that three genetically and pathogenically distinct strains of T. congolense are closely related to each other. When all known AOX sequences collected from current databases were analyzed, the common ancestor of these three Trypanosoma species shared a sister-group position to T. brucei/T. evansi. Monophyly of Trypanosoma spp. was clearly supported (100% bootstrap value) with Trypanosoma vivax placed at the most basal position of the Trypanosoma clade. Monophyly of other eukaryotic lineages, terrestrial plants + red algae, Metazoa, diatoms, Alveolata, oomycetes, green algae, and Fungi, was reconstructed in the best AOX tree obtained from maximum likelihood analysis, although some of these clades were not strongly supported. The terrestrial plants + red algae clade showed the closest affinity with an alpha-proteobacterium, Novosphingobium aromaticivorans, and the common ancestor of these lineages, was separated from other eukaryotes. Although the root of the AOX subtree was not clearly determined, subsequent phylogenetic analysis of the composite tree for AOX and plastid terminal oxidase (PTOX) demonstrated that PTOX and related cyanobacterial sequences are of a monophyletic origin and their common ancestor is linked to AOX sequences.  相似文献   

3.
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.  相似文献   

4.
5.
《BBA》2023,1864(4):149003
The alternative oxidase (AOX) is a terminal oxidase in the electron transport system that plays a role in mitochondrial bioenergetics. The past 20 years of research shows AOX has a wide yet patchy distribution across the tree of life. AOX has been suggested to have a role in stress tolerance, growth, and development in plants, but less is known about its function in other groups, including animals. In this study, we analyzed the taxonomic distribution of AOX across >2800 species representatives from prokaryotes and eukaryotes and developed a standardized workflow for finding and verifying the authenticity of AOX sequences. We found that AOX is limited to proteobacteria among prokaryotes, but is widely distributed in eukaryotes, with the highest prevalence in plants, fungi, and protists. AOX is present in many invertebrates, but is absent in others including most arthropods, and is absent from vertebrates. We found aberrant AOX sequences associated with some animal groups. Some of these aberrant AOXs were contaminants, but we also found putative cases of lateral gene transfer of AOX from fungi and protists to nematodes, springtails, fungus gnats, and rotifers. Our findings provide a robust and detailed analysis of the distribution of AOX and a method for identifying and verifying putative AOX sequences, which will be useful as more sequence data becomes available on public repositories.  相似文献   

6.
Alternative oxidase (AOX) is a terminal ubiquinol oxidase present in the respiratory chain of all angiosperms investigated to date, but AOX distribution in other members of the Viridiplantae is less clear. We assessed the taxonomic distribution of AOX using bioinformatics. Multiple sequence alignments compared AOX proteins and examined amino acid residues involved in AOX catalytic function and post-translational regulation. Novel AOX sequences were found in both Chlorophytes and Streptophytes and we conclude that AOX is widespread in the Viridiplantae. AOX multigene families are common in non-angiosperm plants and the appearance of AOX1 and AOX2 subtypes pre-dates the divergence of the Coniferophyta and Magnoliophyta. Residues involved in AOX catalytic function are highly conserved between Chlorophytes and Streptophytes, while AOX post-translational regulation likely differs in these two lineages. We demonstrate experimentally that an AOX gene is present in the moss Physcomitrella patens and that the gene is transcribed. Our findings suggest that AOX will likely exert an influence on plant respiration and carbon metabolism in non-angiosperms such as green algae, bryophytes, liverworts, lycopods, ferns, gnetophytes, and gymnosperms and that further research in these systems is required.  相似文献   

7.
The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.  相似文献   

8.
交替氧化酶(Alternative Oxidase,AOX)广泛存在于高等植物、藻类和原生生物线粒体内膜。从主呼吸链的辅酶Q分岔,是氧化辅酶Q、还原氧分子生成水的另一终端氧化酶。氧化过程没有质子穿膜运动、热量以产热方式散发。产热植物中交替氧化产生的热量使花粉发出芳香味吸引虫传粉。推测植物AOX使植物在环境胁迫下维持呼吸,调节能量平衡,抵抗氧化胁迫,保持三羧酸循环的运行。AOX是首次发现的双铁羧酸蛋白质成员中的膜蛋白质,AOX与膜分离后容易失活,至今尚未有三级结构的报导,只有二级结构的2种假设模式,最新的模式AOX为膜界面蛋白质而不是跨膜蛋白。最近我们的研究表明有2个途径可获得适量有活性的AOX:建立优化的pFLAG-1-AOX大肠杆菌超量表达系统;从产热植物如斑叶阿若母(Arum maculatum)花序组织线粒体分离纯化有活性的AOX。  相似文献   

9.
10.
Alternative oxidase (AOX) and plastoquinol terminal oxidase (PTOX) are related quinol oxidases associated with respiratory and photosynthetic electron transport chains, respectively. Contrary to previous belief, AOX is present in numerous animal phyla, as well as heterotrophic and marine phototrophic proteobacteria. PTOX appears limited to organisms capable of oxygenic photosynthesis, including cyanobacteria, algae and plants. We propose that both oxidases originated in prokaryotes from a common ancestral di-iron carboxylate protein that diversified to AOX within ancient proteobacteria and PTOX within ancient cyanobacteria. Each then entered the eukaryotic lineage separately; AOX by the endosymbiotic event that gave rise to mitochondria and later PTOX by the endosymbiotic event that gave rise to chloroplasts. Both oxidases then spread through the eukaryotic domain by vertical inheritance, as well as by secondary and potentially tertiary endosymbiotic events.  相似文献   

11.
12.
13.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Recent studies from our group indicated that AOX plays a crucial role in chloroplast protection under extreme environments, such as high light (HL). Genetic data suggest that AOX is upregulated by light that was mediated by photoreceptors (phytochromes, phototropins and cryptochromes), and it also might have a particular role in relieving the overreduction of chloroplasts. Physiological analyses further suggest that AOX is essential for the dark-tolight transition, especially in the course of de-etiolation. In this mini-review, we highlight recent progress in understanding the beneficial interaction between photosynthesis and mitochondria metabolism and discuss the possible role and mechanism of AOX in dissipation of excess reduced equivalents for chloroplasts under high light condition.Key words: alternative oxidase (AOX), excess light, NAD(P)H dehydrogenases (NDs), photoreceptors, reactive oxygen species (ROS)  相似文献   

14.
All higher plants and many fungi contain an alternative oxidase (AOX), which branches from the cytochrome pathway at the level of the quinone pool. In an attempt, first, to distinguish between two proposed structural models of this di-iron protein, and, second, to examine the roles of two highly conserved tyrosine residues, we have expressed an array of site-specific mutants in Schizosaccharomyces pombe. Mitochondrial respiratory analysis reveals that S. pombe cells expressing AOX proteins in which Glu-217 or Glu-270 were mutated, no longer exhibit antimycin-resistant oxygen uptake, indicating that these residues are essential for AOX activity. Although such data corroborate a model that describes the AOX as an interfacial membrane protein, they are not in full agreement with the most recently proposed ligation sphere of its di-iron center. We furthermore show that upon mutation of Tyr-253 and Tyr-275 to phenylalanines, AOX activity is fully maintained or abolished, respectively. These data are discussed in reference to the importance of both residues in the catalytic cycle of the AOX.  相似文献   

15.
为获得IGF-Ⅱ的高效表达,构建了其多拷贝、分泌型表达载体:含有5个串联的IGF-Ⅱ表达单元;由受甲醇诱导的醇氧化酶启动子控制表达;利用啤酒酵母α因子的前导肽引导分泌.线形化表达载体转化P.pastoris蛋白酶缺陷型菌株后,筛选到有IGF-Ⅱ表达和分泌的阳性转化子;进一步优化表达、培养条件后,IGF-Ⅱ在高密度发酵上清中的产量可达60 m g/L.对P.pastoris产生的rhIGF-Ⅱ的性质分析表明,其具有正确的分子量,N 端和较好的生物活性.  相似文献   

16.
Transgenic tobacco (Nicotiana tabacum) lacking mitochondrial alternative oxidase (AOX) have been compared with wild-type (Wt) tobacco using two different systems, either suspension cell cultures or leaves. In both systems, a lack of AOX was accompanied by an increase in some anti-oxidant defenses, consistent with the hypothesis that a lack of AOX increases the mitochondrial generation of reactive oxygen species (ROS). In most cases, this increase in anti-oxidant defenses could more than offset the presumed increased rate of ROS generation, resulting paradoxically in a lower steady-state level of ROS than was found in Wt leaves or suspension cells. We also found that the amount of cell death induced by salicylic acid or nitric oxide correlated strongly with the level of ROS (irrespective of the level of AOX), while death induced by azide was dependent upon the presence or absence of AOX. These results suggest that susceptibility to cell death by signaling molecules (salicylic acid and nitric oxide) is dependent upon the steady-state cellular level of ROS and that AOX levels clearly contribute to this steady state, perhaps by influencing the rate of mitochondrial-generated ROS and hence the cellular level of anti-oxidant defenses.  相似文献   

17.
Under low temperature conditions, the cytochrome pathway of respiration is repressed and reactive oxygen species (ROS) are produced in plants. Mitochondrial alternative oxidase (AOX) is the terminal oxidase responsible for the cyanide-insensitive and salicylhydroxamic acid-sensitive respiration. To study functions of wheat AOX genes under low temperature, we produced transgenic Arabidopsis by introducing Waox1a expressed under control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis thaliana. The enhancement of endogenous AOX1a expression via low temperature stress was delayed in the transgenic Arabidopsis. Recovery of the total respiration activity under low temperature occurred more rapidly in the transgenic plants than in the wild-type plants due to a constitutively increased alternative pathway capacity. Levels of ROS decreased in the transgenic plants under low temperature stress. These results support the hypothesis that AOX alleviates oxidative stress when the cytochrome pathway of respiration is inhibited under abiotic stress conditions.  相似文献   

18.
Endothermic heating of floral tissues and even thermoregulation is known to occur in a number of plant species across a wide taxonomic range. The mechanisms by which flowers heat, however, are only just beginning to be understood, and even less is known about how heating is regulated in response to changes in ambient temperature. We have recently demonstrated that the alternative pathway of respiration, in which the alternative oxidase (AOX) rather than cytochrome C (COX) acts as terminal electron acceptor, is responsible for heat generation in one thermoregulating species, the sacred lotus (Nelumbo nucifera). In the March issue of the Journal of Experimental Botany we further demonstrated that AOX-mediated heat production in this species is regulated at both the level of gene expression and also post-translationally. Similarly, AOX has also been implicated in heat production in other thermogenic species. In this addendum we discuss the central role of AOX in heat production and how post-translational mechanisms may provide the fine control necessary for thermoregulation.Key words: alternative oxidase, Nelumbo nucifera, thermogenic plants, uncoupling proteins  相似文献   

19.
Fu A  Liu H  Yu F  Kambakam S  Luan S  Rodermel S 《The Plant cell》2012,24(4):1579-1595
The immutans (im) variegation mutant of Arabidopsis thaliana is caused by an absence of PTOX, a plastid terminal oxidase bearing similarity to mitochondrial alternative oxidase (AOX). In an activation tagging screen for suppressors of im, we identified one suppression line caused by overexpression of AOX2. AOX2 rescued the im defect by replacing the activity of PTOX in the desaturation steps of carotenogenesis. Similar results were obtained when AOX1a was reengineered to target the plastid. Chloroplast-localized AOX2 formed monomers and dimers, reminiscent of AOX regulation in mitochondria. Both AOX2 and AOX1a were present in higher molecular weight complexes in plastid membranes. The presence of these proteins did not generally affect steady state photosynthesis, aside from causing enhanced nonphotochemical quenching in both lines. Because AOX2 was imported into chloroplasts using its own transpeptide, we propose that AOX2 is able to function in chloroplasts to supplement PTOX activity during early events in chloroplast biogenesis. We conclude that the ability of AOX1a and AOX2 to substitute for PTOX in the correct physiological and developmental contexts is a striking example of the capacity of a mitochondrial protein to replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic apparatus.  相似文献   

20.
Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号