首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix   总被引:1,自引:0,他引:1  
Nuclear matrix, a key structure in the nuclear framework, appears to be a particularly responsive target during heat shock treatment of cells. We have previously shown that nuclear matrix is a preferential target for protein kinase CK2 signaling in the nucleus. The levels of CK2 in the nuclear matrix undergo dynamic changes in response to altered growth status in the cell. Here, we have demonstrated that CK2 targeting to the nuclear matrix is profoundly influenced by treatment of the cells to temperatures higher than 37 degrees C. Rapid increase in the nuclear matrix association of CK2 is observed when cells are placed at temperatures of 41 and 45 degrees C. This effect at 45 degrees C was higher than at 41 degrees C, and was time-dependent. Also, different cell lines behaved in a qualitatively similar manner though the quantitative responses differed. The modulations in the nuclear matrix associated CK2 in response to heat shock appear to be due to trafficking of the enzyme between cytosolic and nuclear compartments. In addition, it was noted that isolated nuclei subjected to heat shock also responded by a shuttling of the intrinsic CK2 to the nuclear matrix compartment. These results suggest that modulations in CK2 in the nuclear compartment in response to the heat stress occur not only by a translocation of the enzyme from the cytoplasmic compartment to the nuclear compartment, but also that there is a redistribution of the kinase within the nuclear compartment resulting in a preferential association with the nuclear matrix. The results support the notion that CK2 association with the nuclear matrix in response to heat shock may serve a protective role in the cell response to stress.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The product of the Saccharomyces cerevisiae gene CDC28, a protein kinase required for initiation of the cell division cycle, was localized within yeast cells. By using immunofluorescence methods, the CDC28 product was shown to be primarily cytoplasmic in distribution. The gene product was localized largely to the particulate fraction by differential centrifugation after mechanical disruption in aqueous buffers. The particulate association was not affected by the presence of nonionic detergent. To refine this localization further, a procedure was developed for the preparation of yeast cytoplasmic matrices which resemble the cytoskeletons of vertebrate cells on the basis of methodology, immunochemistry, and gross ultrastructure. A portion of the CDC28 product was found to be tightly associated with these detergent-insoluble cytoplasmic matrices by both immunofluorescence and immunoblotting procedures. Although, for technical reasons, precise quantitation was not possible, it is estimated that a minimum of 2-15% of the total CDC28 product pool is involved in the association with the insoluble matrix. Alcohol dehydrogenase, a soluble cytoplasmic protein, was found not to be associated with the cytoplasmic matrices at any detectable level, whereas, in contrast, approximately 10-40% of the total cellular actin, a bonafide cytoskeletal protein, was present in these structures. The proportion of CDC28 gene product associated with the particulate fraction, and perhaps the insoluble matrix, appears to be substantially decreased during the preparation of spheroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号