首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Accumulation of HIF-1alpha during normoxic conditions at high cell density has previously been shown to occur and can be used to stabilize HIF-1alpha protein in the absence of a specific anaerobic chamber. However, the impact and origin of this pool of HIF-1alpha, obtained under normoxia, has been underestimated. In this study, we have systematically compared the related pools of HIF-1alpha stabilized in normoxia by high cell density to those obtained at low density in hypoxia. At first glance, these two stimuli appear to have similar outcomes: HIF-1alpha stabilization and induction of HIF-1-dependent genes. However, upon careful analysis, we observed that molecular mechanisms involved are different. We clearly demonstrate that density-dependant HIF-1alpha accumulation during normoxia is due to the cells high consumption of oxygen, as demonstrated by using a respiration inhibitor (oligomycin) and respiratory-defective mutant cells (GSK3). Finally and most importantly, our data indicate that a decrease in AKT activity followed by a total decrease in p70(S6K) phosphorylation reflecting a decrease in mTOR activity occurs during high oxygen consumption, resulting from high cell density. In contrast, hypoxia, even at severe low O(2) levels, only slightly impacts upon the mTOR pathway under low cell density conditions. Thus, activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway whereas HIF-1alpha activation obtained in high confluency is totally dependent on mTOR pathway as rapamycin totally impaired (i) HIF-1alpha stabilization and (ii) mRNA levels of CA9 and BNIP3, two HIF-target genes.  相似文献   

7.
8.
9.
10.
11.
12.
Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation   总被引:22,自引:0,他引:22  
Jeong JW  Bae MK  Ahn MY  Kim SH  Sohn TK  Bae MH  Yoo MA  Song EJ  Lee KJ  Kim KW 《Cell》2002,111(5):709-720
Hypoxia-inducible factor 1 (HIF-1) plays a central role in cellular adaptation to changes in oxygen availability. Recently, prolyl hydroxylation was identified as a key regulatory event that targets the HIF-1alpha subunit for proteasomal degradation via the pVHL ubiquitination complex. In this report, we reveal an important function for ARD1 in mammalian cells as a protein acetyltransferase by direct binding to HIF-1alpha to regulate its stability. We present further evidence showing that ARD1-mediated acetylation enhances interaction of HIF-1alpha with pVHL and HIF-1alpha ubiquitination, suggesting that the acetylation of HIF-1alpha by ARD1 is critical to proteasomal degradation. Therefore, we have concluded that the role of ARD1 in the acetylation of HIF-1alpha provides a key regulatory mechanism underlying HIF-1alpha stability.  相似文献   

13.
14.
15.
16.
The hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha are structurally similar as regards their DNA-binding and dimerization domains, but differ in their transactivation domains and, as is shown by experiments using hif-1 alpha(-/-) and hif-2 alpha(-/-) mice, in their functions. This implies that HIF-1 alpha and HIF-2 alpha may have unique target genes. To address this discrepancy and identify HIF-2 alpha-specific target genes, we performed yeast two-hybrid analysis and identified the tumor suppressor Int6/eIF3e/p48 as a novel target gene product involved in HIF-2 alpha regulation. The int6 gene was first identified from a screen in which the mouse mammary tumor virus was employed as an insertional mutagen to identify genes whose functions are critical for breast tumor formation. Here, by using two-hybrid analysis, immunoprecipitation in mammalian cells, and HRE-reporter assays, we report the specific interaction of HIF-2 alpha (but not HIF-1 alpha or HIF-3 alpha) with Int6. The results indicate that the direct interaction of Int6 induces proteasome inhibitor-sensitive HIF-2 alpha degradation. This degradation was clearly observed in renal cell carcinoma 786-O cells, and was found to be both hypoxia- and pVHL-independent. Furthermore, Int6 protein knockdown by int6-siRNA vectors or the dominant-negative mutant Int6-Delta C increased endogenous HIF-2 alpha expression, even under normoxia, and induced sets of critical angiogenic factors comprising vascular endoplasmic growth factor, angiopoietin, and basic fibroblast growth factor mRNA. These results indicate that Int6 is a novel and critical determinant of HIF-2 alpha-dependent angiogenesis as well as cancer formation, and that int6-siRNA transfer may be an effective therapeutic strategy in pathological conditions such as heart and brain ischemia, hepatic cirrhosis, and obstructive vessel diseases.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号