首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
α-Tocopherol is the most biologically active component of vitamin E and is synthesized only by photosynthetic organisms. Two heterotrophic cell lines of sunflower (Helianthus annuus L.) of differing α-tocopherol biosynthetic capability, three-fold higher in the high synthesizing cell line, HT, than in the low synthesizing one, LT, were previously identified. To investigate the relationship between α-tocopherol biosynthesis and photomixotrophic culture conditions, a new photomixotrophic sunflower cell line HS3 was established by selecting HT cells able to grow in the presence of a ten-fold reduced sucrose concentration in the culture medium. The photosynthetic properties of HS3 cells were characterized in comparison with HT and LT cells, revealing an increase in chlorophyll content, chloroplast number, and level of the photosynthesis related enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Furthermore, an enhanced expression of the gene encoding for the tocopherol biosynthetic enzyme geranyl-geranylpyrophosphate synthase (GGPPS) was observed in HS3 cells. HS3 cells also revealed a 25% and a more than three-fold higher tocopherol level than HT and LT, respectively, indicating a positive correlation between α-tocopherol biosynthesis of sunflower cell cultures and their photosynthetic properties. These findings can be useful for improving the tocopherol yields of the sunflower in vitro production system.  相似文献   

2.
The pools of photoprotective molecules respond to changes in the environmental conditions and sometimes to leaf ageing. We asked to what extent both factors contribute to the contents of α-tocopherol and xanthophyll cycle [V + A + Z (VAZ)] pigments. To address this question, we used boxtree ( Buxus sempervirens ) as model species because its leaves are long-lived and evergreen and are subjected to a succession of different stress conditions during their lifespan. In three age classes of sun and shade leaves of this species, seasonal changes in photoprotective compounds were followed during 15 months and a leaf age interval of 40 months was covered. As could be expected, VAZ and α-tocopherol pools increased in parallel during stress periods (summer and winter), but only VAZ recovered to the initial pools once stress disappeared. As a result, the basal α-tocopherol level increased linearly in a time-dependent manner that was also higher in sun leaves of this species when compared with shade leaves, and in fact, the rate of tocopherol increase was directly proportional to irradiance in another evergreen ( Laurus nobilis ). To study whether light dependency of tocopherol accumulation is observed in other species, we performed a literature survey that revealed that this age-dependent tocopherol increase was significant in sun leaves from 65% of the species for which age-dependent tocopherol changes have been reported, and it was on average 2.2-fold higher in sun leaves as compared with shade leaves. We conclude that there are two components in the α-tocopherol pool, one dynamic that responds to environmental changes and one age-related which increases linearly with time in a light-dependent manner. The physiological meaning of the latter remains obscure.  相似文献   

3.
Abstract: The concentrations of tocopherols in selected areas of the brains and a few peripheral tissues of 3-, 14-, and 30-month-old male Fischer 344 rats were determined by a high-performance liquid chromatographic method. Throughout the time period studied, α-tocopherol was the only tocopherol detected in the brain. Concentrations of α-tocopherol increased significantly with age in medulla and spinal cord whereas no such change was seen in other brain areas. Among the peripheral tisues, total tocopherol concentrations increased with age in the liver and adipose tissue while no significant changes were observed in the heart. The pattern of uptake of radioactive α-tocopherol from the serum by the various areas of the brain was similar for the 3-and 14-month-old animals even though the brains from the 14-month-old animals took up less of the radioactive compound. Measurable amounts of tocopherol esters were not present in the tissues of the 30-month-old animals.  相似文献   

4.
The effects of reactive oxygen species (ROS) on α-tocopherol production in mitochondria and chloroplasts of Euglena gracilis were investigated. Addition of an organic carbon source to the medium resulted in increased mitochondrial activity, intracellular O2 - concentration and α-tocopherol productivity in E. gracilis W14ZUL (a chloroplast deficient mutant). α-Tocopherol productivity of the wild-type strain (with both mitochondria and chloroplast) was higher than that of the W14ZUL strain. In the case of the wild strain, the O2 generated in chloroplasts was efficiently scavenged by the α-tocopherol synthesized inside the chloroplast. In photoheterotrophic culture (with an organic carbon source), there was a positive correlation between α-tocopherol production and O2 generation. Addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) resulted in increased O2 generation and α-tocopherol productivity. These results indicate that the ROS generated in mitochondria and chloroplasts play important roles in α-tocopherol production by E. gracilis. The presence of chloroplasts and generation of intracellular ROS are important for efficient production of α-tocopherol.  相似文献   

5.
Moringa oleifera Lam. leaves are rich source of carotenoids (provitamin A) and α-tocopherol (vitamin E), and there is a scope for their further enhancement, through elicitor mediation, thereby a great potential for addressing these vitamins deficiency. In the present study, we report the efficacy of foliar administration of biotic elicitors, carboxy-methyl chitosan and chitosan, and signaling molecules, methyl jasmonate (MJ) and salicylic acid (SA) for enhancement of major carotenoids and α-tocopherol. Highest α-tocopherol content of 49.7 mg/100 g FW was recorded upon foliar application of 0.1 mM SA after 24 h of treatment, which represented a 187.5 % increase in comparison to the untreated control. Similarly, a maximum of 52.6 mg/100 g FW lutein, and 21.8 mg/100 g FW β-carotene content were observed in leaves after 24 h of treatment with MJ, which represented a 54.0 and 20.3 % increase in comparison to the untreated control, respectively. Among the major genes of carotenoid biosynthetic pathway, the expression of lycopene β-cyclase (LCY-β) was maximum influenced after treatment with elicitors and signaling molecules, compared to phytoene synthase and phytoene desaturase, suggesting the LCY-β-mediated enhancement in the production of β-carotene in elicitor treated M. oleifera leaves. Enhanced production of α-tocopherol under respective elicitor treatment was further supported by 2.0–2.7 fold up-regulation of γ-tocopherol methyl transferase, compared to untreated control. This is the first report on elicitor-mediated enhanced production of tocopherol and carotenoids in foliage of economically important food plant.  相似文献   

6.
The auxin to cytokinin ratios are described for promoting growth in the in vitro cultures of soybean (Glycine max (L.) Merr. cv. Bragg) and perennial clover (Trifolium repens L. cv. Regal Ladinc). Callus growth was induced on somatic tissue with 50:1 auxin to cytokinin (w/w) ratio. A 5:1 ratio served for initiation of cell suspensions from callus and for subsequent growth of callus from cells in suspension. A 1:2 ratio served for regeneration of buds and plantlets from the callus grown from cells. Although (2,4-dichlorophenoxy) acetic acid was the auxin for suspension and regenerative cultures, (2,4,5-trichlorophenoxy)acetic acid was the more effective auxin for initiation of callus on somatic tissue. All cultures were grown with 6-furfurylaminopurine as the cytokinin. The phytohormones strongly influenced the rates of culture growth, but determination of culture type was augmented by dl-alpha tocopherol acetate and iron. Tocopherol and a relatively high complement of iron promoted growth of juvenile cultures, whereas low level of iron and absence of tocopherol favored growth to comparatively more differentiated cultures. Without tocopherol, no callus formed on somatic tissue during the allotted period of incubation. Tocopherol plus a complement of low iron enabled growth of callus on rapidly growing somatic tissue. A high level of iron enabled comparatively more callus growth but suppressed growth of somatic tissue. In suspension cultures tocopherol and a high iron level enhanced dispersion of cells. A low iron complement in the absence of tocopherol induced growth of callus from cells and subsequent regeneration of buds and plantlets from the callus.  相似文献   

7.

Main conclusion

Callus cultures of rubber tree may serve as an efficient model to screen and study environmental factors and phytohormones that stimulate laticifer cell differentiation and improve latex yield. The number of laticifer cells in bark is one of the most important factors determining the biosynthesis and economic value of rubber trees (Hevea brasiliensis). The differentiation of laticifer cells in planta has been characterized, whereas laticifer-cell differentiation in callus cultures in vitro is largely unknown. In this study, we present molecular and physiological evidences for laticifer-cell differentiation in calli derived from rubber tree anthers. RT-PCR analysis showed that three key genes rubber elongation factor (REF), small rubber particle protein (SRPP), and cis-prenyl transferase (CPT) that are essential in latex biosynthesis in rubber tree bark also were transcribed in anther calli. Laticifer cell development in callus cultures was age-dependent; the cells began to appear at 58 days after initiation of culture, and the percentage of laticifer cells increased steadily with increasing callus age. Addition of 0–2 mg/L jasmonic acid (JA) to the media significantly promoted the differentiation of laticifer cells in callus cultures. However, JA concentrations higher than 3 mg/L were not optimum for laticifer cells differentiation; this result was not observed in previous in planta studies. Laticifer cells differentiated on media with pH 5.8–7.0, with an optimum of pH 6.2, whereas a higher pH inhibited differentiation. These results indicate that the anther-derived rubber tree callus may serve as a new and more efficient model to study environmental factors that influence laticifer cell differentiation, and may be useful for research on new technologies to improve latex yield, and to screen for commercially useful phytohormones.  相似文献   

8.
Microbiological production of tocopherols: current state and prospects   总被引:1,自引:0,他引:1  
Tocopherols are antioxidants that prevent various diseases caused by oxidative stress. Tocochromanols comprise four isoforms of tocopherols and four isoforms of tocotrienols but α-tocopherol is the most abundant and active isoform in human and animal tissues. Tocopherols are used as dietary supplements for human, as food preservatives, in manufacture of cosmetics, and for fortification of animal feed. Only photosynthetic cells are known to accumulate detectable concentrations of tocopherols. Tocopherols can be extracted and purified or concentrated from vegetable oils and other higher plant materials. However, the concentrations in these higher plant materials are very low and there are high proportions of the less-active homologues of tocopherols. Among the many strains of photosynthetic microorganisms known to accumulate tocopherols, Euglena gracilis is promising for commercial production of α-tocopherol. The growth rate and α-tocopherol contents are relatively high and α-tocopherol comprise more than 97% of all the tocopherols accumulated by Euglena gracilis. Although a lot of work has been done to increase the contents and composition of tocopherols in higher plants through genetic and metabolic engineering, work on genetic modification of microorganisms for increased tocopherol accumulation is scarce. Many cultivation systems have been investigated for efficient production of tocopherol by Euglena gracilis. However, those that involve heterotrophic metabolism are more promising. Bubble columns and flat-plate photobioreactors are more suitable for commercial production of tocopherols, than the tubular, internally illuminated, and open-air photobioreactors.  相似文献   

9.
Summary Compact callus clusters showing a certain level of cellular or tissue differentiation were established from Catharanthus roseus stem and leaf explants in a modified MS liquid induction medium supplemented with 5.37 μM α-naphthaleneacetic acid and 4.65 μM kinetin. In the induction medium most leaf explants developed into friable half-closed hollow callus clusters, whereas in the same medium containing 2,4-dichlorophenoxyacetic acid instead of α-naphthaleneacetic acid, most leaf explants were induced to form dispersed cell suspension cultures. Characteristics of these different types of suspension cultures were compared, and the results showed that the compact callus clusters could synthesize indole alkaloids 1.9- and 2.4-fold higher than the half-closed hollow callus clusters and dispersed cell cultures, respectively. The degree of compaction expressed by the ratio of fresh weight to dry weight of these suspension cultures was correlated to indole alkaloid production. Our studies also postulated that the level of cellular/tissue differentiation might be responsible for these different alkaloid synthesis capabilities. Sucrose regime affected some properties (the size, degree of compaction, differentiation level) of the compact callus cluster cultures and therefore influenced alkaloid production.  相似文献   

10.
Callus cultures were established from five Psoralea species (Leguminosae) with the objective of producing daidzein (isoflavone). The biomass doubling times ranged from 7 to 16 days according to the species and a 48 weeks period was necessary to obtain lines with stable growth characteristics. All the 217 callus lines were analyzed for their daidzein content using HPLC. Our callus collection showed a large interspecific variation and the highest concentrations were recovered in P. obtusifolia callus lines (maximum of 0.9680% DW). Intraspecific variation was also important and allowed the recovery of high-producing lines (production exceeding 0.3000% DW) with four out of the five Psoralea species studied. The daidzein repartition was investigated in planta with P. cinerea in order to evaluate the potential of in vivo production. Mature fruits were the richest organs for daidzein concentration in P. cinerea and were used as indicators to evaluate the possible production with the other four plant species. In vitro concentrations were always much higher than in planta, and no correlation could be established between the calluses and plants for the five species. Our callus lines contained concentrations comparable to Psoralea hairy root lines. They can be considered as an interesting material to further study the production of daidzein. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l?1 sucrose, 0.5 mg l?1 of the auxin 1-naphthalene acetic acid, and 0.5 mg l?1 of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230 %) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.  相似文献   

12.
The photosynthetic wild type and the spontaneous non-photosynthetic WZSL mutant of the unicellular flagellate Euglena gracilis were grown to investigate the influence of photoheterotrophic and heterotrophic conditions on α-tocopherol (vitamin E) content. HPLC analysis demonstrated a marked enhancement (almost 100%) of tocopherol content in the light in both strains, independent of the presence of chloroplasts. These findings indicate that the formation of vitamin E occurs inside both the mitochondrial and chloroplastic compartment, and that the correlation between light and vitamin E production is not linked to the existence of chlorophyll. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Shoot cultures and callus cultures from roots and leaves of Hemidesmus indicus R. Br (Asclepiadaceae) were established on Murashige and Skoog medium with various hormonal combinations. The production of antioxidants (lupeol, vanillin, and rutin) in shoot cultures, callus cultures derived from leaf cells and root cells, was compared with root and aerial portions of the parent plant. Shoot cultures and leaf callus cultures produced more antioxidants than root callus cultures. In vitro culture of this species might ofter an alternative method for production of these important pharmaccuticals, which would reduce the collection pressure on this rare plant.  相似文献   

14.
The effect of α-tocopherol, β-carotene, monogalactosyldi-glyceride and phosphatidylcholine on red light induced degradation of chlorophyll a was studied in acetone at 4°C. Monogalaclosyldi-glyceride was ineffective up to a molar ratio of monogalactosyldi glyceride to chlorophyll of 1:10. α-Tocopherol, β-carotene and phosphatidylcholine inhibited chlorophyll degradation. Maximal protection by α tocopherol and β-carotene was similar (76%) but on a molar basis a tocopherol was less effective. Protection by phosphatidylcholine was less than by a tocopherol and α-carotene but the lipid was effective at a lower ratio of chlorophyll to protectant. Inhibition by phosphatidylcholine was independent of the degree of unsaturation of the fatty acids. Effects of β-carotene and α-tocopherol were additive at suboptimal concentrations, but addition did not increase the maximal protection of 76% by these substances alone. Phosphatidylcholine increased the effectiveness of α-tocopherol and β-carotene independent of their concentrations. It is suggested that interactions between lipids participate in the mechanism protecting chlorophyll a against photooxidation in the chloroplast membrane.  相似文献   

15.
Light has been found to increase the proportion of tracheary elements differentiating in callus cultures derived from xylem-parenchyma of Pinus radiata D. Don grown on an induction medium containing activated charcoal but no phytohormones. The differentiation rate increased from 20% when callus was grown in darkness to 45% when callus was grown with a 16 h or 24 h photoperiod. When callus was grown with a 16 h photoperiod, tracheary elements were observed 2 days after transfer of callus to the induction medium, as compared to 5 days when callus was cultured in darkness. The differentiation rate was also influenced by the concentration of activated charcoal added to the induction medium, the optimum concentration being 5 g l−1. Exclusion of activated charcoal from the induction medium decreased the differentiation rate to 2%. The activities of the lignin-related enzymes L-phenylalanine ammonia lyase and cinnamyl alcohol dehydrogenase were significantly higher in cell cultures grown with a 16 h photoperiod as compared to when grown in darkness. The results show that light had a stimulating effect on tracheary element differentiation and the activities of lignin-related enzymes in P. radiata callus cultures. The new growth conditions markedly improve this cell culture system and make it particularly useful for functional gene testing and cell-wall analysis of in vitro grown tracheary elements of coniferous gymnosperms.  相似文献   

16.
In order to increase tocopherol content, genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and γ-tocopherol methyltransferase (γ-TMT) were constitutively over-expressed in lettuce (Lactuca sativa L. var. logifolia), alone or in combination. Over-expression of hpt could increase total tocopherol content, while over-expression of γ-tmt could shift tocopherol composition in favor of α-tocopherol. Transgenic lettuce lines expressing both hpt and γ-tmt produced significantly higher amount of tocopherol and elevated α-/γ-tocopherol ratio compared with non-transgenic control and transgenic lines harboring a single gene (hpt or γ-tmt). The best line produced eight times more tocopherol than the non-transgenic control and more than twice than hpt single-gene transgenic line.  相似文献   

17.
A special culture system, compact callus clusters, was developed from Catharanthus roseus stem explants in a modified Murashige and Skoog (MS) liquid medium containing 5.37 µM -naphthaleneacetic acid and 4.65 µM kinetin. Morphological and anatomical studies showed that the globular compact callus cluster cultures consisted of many cohesive callus aggregates displaying some level of cellular/tissue differentiation, which was also in agreement with the results from peroxidase and esterase isoenzyme pattern analysis. The compact callus cluster cultures could synthesise about 2-fold more indole alkaloids than the dispersed cell cultures, and this was postulated to be associated with their differential status. Plant growth regulators and sucrose concentration, as well as shaking speed significantly affected properties of the compact callus clusters. In detail, 2,4-dichlorophenoxyacetic acid destroyed the compact structure and reduced alkaloid production of the compact callus cluster cultures; but a high concentration of cytokinins was necessary to maintain the compact structure and high alkaloid production of the special cultures. The optimum sucrose (5–6%) gave the greatest alkaloid and biomass production, as well as the greatest degree of compaction of the compact callus clusters.  相似文献   

18.
Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.) tubers through metabolic engineering. Two transgenes were constitutively over-expressed in potato: Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase (At-HPPD) and A. thaliana homogentisate phytyltransferase (At-HPT). α-Tocopherol levels in the transgenic plants were determined by high-performance liquid chromatography. In potato tubers, over-expression of At-HPPD resulted in a maximum 266% increase in α-tocopherol, and over-expression of At-HPT yielded a 106% increase. However, tubers from transgenic plants still accumulated approximately 10- and 100-fold less α-tocopherol than leaves or seeds, respectively. The results indicate that physiological and regulatory constraints may be the most limiting factors for tocopherol accumulation in potato tubers. Studying regulation and induction of tocopherol biosynthesis should reveal approaches to more effectively engineer crops with enhanced tocopherol content.  相似文献   

19.
In callus cultures of Nicotiana tabacum L. cv. Burley 21 we have examined the effect of two auxin concentrations (1 and 11.5 μ M α-naphthaleneacetic acid) in the culture medium on K+, putrescine and nicotine levels and activities of putrescine-biosyn-thetic enzymes l -arginine decarboxylase (EC 4.1.1.19) and l -ornithine decarboxylase (EC 4.1.1.17). The calli grown on the low-auxin medium (with optimal auxin concentration for nicotine synthesis) had significantly lower concentrations of K+ and higher concentrations of nicotine than those grown on the high-auxin medium (with a supraoptimal auxin concentration). Furthermore, in the calli grown on both culture media, there was a positive correlation between the levels of HCIO4-soluble free putrescine and nicotine, as well as a negative correlation between those of HCIO4-soluble bound putrescine and the alkaloid. The results suggest that in tobacco callus K+ uptake, the accumulation of HCIO4-soluble free putrescine and nicotine synthesis are related processes that depend upon the concentration of auxin in the culture medium; a concentration of 1 μ M NAA would increase HCIO4-soluble free putrescine level to a greater degree than that of 11,5 μ M NAA, and consequently lead to a higher production of the alkaloid. Although both putrescine-biosynthetic enzymes are active in our callus cultures, ornithine decarboxylase activity was considerably greater. This interpretation is supported by the enhancement of the 35.5 kDa band and 38.9 kDa band (detected by SDS-PAGE) which showed ornithine and arginine decarboxylase activity, respectively.  相似文献   

20.
The most biologically active component of vitamin E, -tocopherol, is synthesized in its most effective stereoisomeric form only by photosynthetic organisms. Using sunflower cell cultures, a suitable in vitro production system of natural -tocopherol was established. The most efficient medium was found to be MS basal medium with naphthaleneacetic acid and 6-benzylaminopurine with the addition of casaminoacids and myo-inositol. Culture feeding experiments using biosynthetic precursors showed that -tocopherol production improved by 30% when homogentisic acid was used. Interestingly, time-course experiments with sunflower suspension cultures showed a possible increase of 78% in -tocopherol production when using cultures of longer subculture intervals. Compared to the starting plant tissue, an overall 100% increase of -tocopherol was reached by these sunflower cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号