首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The life cycles and annual production of the eight most abundant species of chironomids (Prodadius cf. choreus, Tanypus punctipennis, Chironomus bernensis, Chironomus gr. plumosus, Cladopelma virescens, Microchironomus tencr, Tanytarsus gr. lestagei, and Cladotanytarsus atridorsum) were studied from sublittoral and profundal samples taken monthly in Lake Banyoles during 1987 at five sampling stations (depths ranging from 5 to 20 m). 2. The number of generations per year deduced from instar-frequency data varied from one to four, depending on the species, lake basin and depth. Annual temperature range, dissolved oxygen in the stratified period and presence of sulphide are the key factors that may explain the differences in the number of generations. 3. Production estimates were calculated using the size-frequency (SF) method corrected for the number of generations (SFG), and the increment-summation method (IS) when cohorts could be clearly deduced. 4. Production calculated with the SFG method gave results which were comparable with those of the IS method using smoothed-survivorship curves in the three species for which the use of the IS method was possible (C. virescens, M. tener and C. atridorsum). Using these methods production was estimated to range from 23–70 mg AFDW (ash-free dry weight) m?2 yr?1 at 12 m to 74–275 mg AFDW m?2 yr?1 in the sublittoral zone of the lake (5-m depth). 5. Calculation of production for the other five species using the size-frequency method with the number of generations (SFG) deduced from monthly instar-frequency data gave values ranging from 12 mg AFDW m?2 yr?1 (Chironomus bernensis at 20 m depth) to 3.75 g AFDW m?2 yr?1(Prodadius cf. choreus at 12 m). 6. Total chironomid production (with the SFG method) varied from 0.8 to 5 g AFDW m?2 yr?1 in the profundal and sublittoral, respectively. At each sampling station two species groups accounted for most of the production: Prodadius cf. choreus and Chironomus spp. Annual production/biomass ratio (P/B) varied from very high values for Prodadius (between 11 and 27, as four generations completed each year) to very low values for Chironomus gr. plumosus (2.20), which completed only one generation each year. The annual production of P. cf. choreus in Lake Banyoles is higher than any reported in the literature due to the completion of four generations and to the high densities of this species.  相似文献   

2.
López  B.  Sabaté  S.  Gracia  C.A. 《Plant and Soil》2001,230(1):125-134
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak (Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m–2 yr–1. Mean annual production for the period analysed was 260+11 g m–2 yr–1. Mortality was similar to production, with a mean value of 253±3 g m–2 yr–1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower.  相似文献   

3.
Secondary production of benthic invertebrates was estimated for Delaware Bay and coastal Delaware. Production and turnover ratios were highest in Delaware Bay (P = 46,572 mg AFDW m−2 yr−1, P:B = 6,O) and progressively lower at two coastal stations (P = 7,501 to 30,124 mg AFDW m−2 yr−1, P:B = 2.3 to 5.3, and P = 4,485 to 4,492mg AFDW m−2 yr−1, P:B =2.3 to 4.8). Production was inversely related to sediment particle size. Production in Delaware Bay was relatively evenly distributed between deposit feeding polychaetes and suspension feeding molluscs with a definite shift in production dominance to suspension feeding molluscs at the coastal stations. Moreover, crustaceans and echinoderms played a larger role in production at the coastal stations than in Delaware Bay. Concerns about the health of soft-bottom communities in Delaware Bay expressed earlier were not supported here. Finally, it was concluded that P and P: B from the Delaware Bay area were very similar to those obtained from other areas in the North Atlantic which agrees with estimates for other estuaries in the northern hemisphere.  相似文献   

4.
1. Density, biomass, production and growth of a predaceous stonefly, Acroneuria lycorias, were compared between fourth-order hard- and soft-water streams in Michigan's upper peninsula, U.S.A. 2. Mean densities, estimated from Hess samples, were higher (100 ± 17 individuals m?2) at the hard-water site than at the soft-water site (40 ± 9 ind. m?2). Mean dry weight biomass was 4.9 times greater at the hard-water site. 3. Mean annual production, calculated using the size frequency method, was 5.0 times greater at the hard-water site (2.18 ± 0.44 g dry weight m?2yr?1) than at the soft-water site (0.43 ± 0.02g dry weight m?2yr?1). Annual production/mean biomass ratios were similar between sites. 4. Monthly growth rates of naturally occurring nymphs of paired cohorts were similar in both streams. Individual growth rates were similar for nymphs reared in artificial streams at high and low water hardnesses with unlimited food and space. 5. Stonefly production and growth rates were influenced more by indirect physical, biological, or habitat factors than by streamwater cation concentrations.  相似文献   

5.
Production of Ascophyllum nodosum (L.) LeJolis ecads and Fuscus vesiculosus L. was calculated from measurements of in situ growth, seasonal variations in standing-crops and seasonal variations in photosynthetic capacity. A computer model for predicting daily, monthly and yearly net production from photosynthesis data was constructed. This model used daily irradiation, actual biomass of algae/m2 contributing to production and photosynthesis vs. light intensity relationships as data inputs. Comparison of production estimated from in situ growth, standing-crops and photosynthesis indicated that both marsh fucoids turn over biomass twice per year. Total net production of both fucoids, estimated from photosynthesis data, was ca. 315 g C · m?2· yr?1. On the other hand, production of both fucoids calculated from standing-crop data was only 155 g C · m?2· yr?1.  相似文献   

6.
Root production and turnover were studied using sequential core sampling and observations in permanent minirhizotrons in the field in three dry heathland stands dominated by the evergreen dwarfshrub Calluna vulgaris and the grasses Deschampsia flexuosa and Molinia caerulea, respectively. Root biomass production, estimated by core sampling, amounted to 160 (Calluna), 180 (Deschampsia) and 1380 (Molinia) g m-2 yr-1, respectively. Root biomass turnover rate in Calluna (0.64 yr-1) was lower compared with the grasses (Deschampsia: 0.96 yr-1; Molinia 1.68yr-1)). Root length turnover rate was 0.75–0.77 yr-1 (Deschampsia) and 1.17–1.49 yr-1 (Molinia), respectively. No resorption of N and P from senescing roots was observed in either species. Input of organic N into the soil due to root turnover, estimated using the core sampling data, amounted to 1.8 g N m-2 yr-1(Calluna), 1.7 g N m-2 yr-1 (Deschampsia) and 19.7 g N m-2 yr-1 (Molinia), respectively. The organic P input was 0.05, 0.07 and 0.55 g P M-2 yr-1, respectively. Using the minirhizotron turnover estimates these values were20–22% (Deschampsia) and 11–30% (Molinia) lower.When the biomass turnover data were used, it appeared that in the Molinia stand root turnover contributed 67% to total litter production, 87% to total litter nitrogen loss and 84% to total litter phosphorus loss. For Calluna and Deschampsia these percentages were about three and two times lower, respectively.This study shows that (1) Root turnover is a key factor in ecosystem C, N, and P cycling; and that (2) The relative importance of root turnover differs between species.  相似文献   

7.
Comparative studies on the limnology, species diversity and standing stock biomass of phytoplankton and zooplankton in five freshwater lakes, Naivasha and Oloidien, Ruiru, Masinga and Nairobi reservoirs, were undertaken. Phytoplankton chlorophyll a, dissolved oxygen and temperature were also measured. Thermocyclops oblongatus (Copepoda) was dominant in all the lakes. Ceriodaphnia cornuta and Diaphanosoma excisum (Cladocera) dominated in lakes Naivasha and Oloiden, whereas in Ruiru, Masinga and Nairobi reservoirs, Brachionus angularis and Hexarthra mira (Rotifera) were the dominant zooplankters. Phytoplankton biomass as chlorophyll a was lowest in Ruiru dam 5.64 ± 4.0 µg l-1 and highest in the eutrophic Nairobi dam 71.5 ± 12.02 µg l-1. The endorheic lakes Naivasha and Oloidien showed medium values of 24.5 ± 4.0 µg l-1.  相似文献   

8.
We used 15N to quantify rates of N translocation from aerial to belowground tissues, foliar leaching, and turnover and production of root and rhizome biomass in the plant-sediment system of short Spartina alterniflora areas of Great Sippewissett Marsh, Massachusetts. Decay of belowground tissues in litterbag incubations at 1- and 10-cm depths resulted in 80% remineralization of the original plant (15N-labeled) N and 20% burial after 3 years. Translocation of 15N from plant shoots in hydrologically controlled laboratory lysimeters maintained under field conditions was 38% of the aboveground pool while leaching of N was 10% from June to October. Most of the translocated N was not retranslocated to new aboveground growth in December but appeared to be either remineralized or buried in the sediment. Injection of 15N into field stands of grass showed initially high incorporation into plants followed by a continuous decline over the next 7 years yielding a gross tumover time of 1.5–1.6yr. Correcting the gross N turnover for recycling of label via translocation and uptake of remineralized label during this period, a net root and rhizome turnover time of 1.0–1.1 yr was obtained. Combining the turnover time with independent estimates of seasonal belowground biomass yielded an estimate of belowground production of 929–1,022 g C m−2 yr−1, similar to measurements by traditional biomass harvest, CO2 based budgets and models for comparable areas of this marsh. Integration of the production and nitrogen balance estimates for short Spartina marsh yielded translocation, 1.4 g N m−2 yr−1, leaching, 0.4 g N m−2 yr−1, remineralization, 14.9–16.3 g N m−2 yr−1, and burial, 3.7–4.1 g N m−2 yr−1.  相似文献   

9.
Studies have shown a strong linkage between zooplankton and fisheries' potential in tropical lakes. High zooplankton production provides the basis for fish production, but knowledge of zooplankton production dynamics in African lakes is extremely limited. Crustacean zooplankton production and the biomass of dominant rotifers in Lake Bosumtwi were assessed over a 2‐year period. The crustaceans comprised an endemic and extremely abundant cyclopoid copepod, Mesocyclops bosumtwii and the cladoceran Moina micrura. Mean standing stock of the crustaceans was 429 mg dw m?3, whilst annual production averaged 2.1 g dw m?3 y?1. Production doubled from 1.4 g dw m?3 y?1 in 2005 to 2.8 g dw m?3 y?1 in 2006. Copepods accounted for 98.5% of crustacean production. The biomass of the dominant rotifers Brachionus calyciflorus and Hexarthra intermedia was less than 1% of total zooplankton biomass. Daily turnover rate and turnover time of the crustaceans was 0.19 day?1 and 6.2 days respectively. Crustacean production yielded no statistical relationship with phytoplankton biomass. Production was well within the range of tropical lakes. Peak crustacean production synchronized maximum rainfall, lake mixing and phytoplankton production. Most importantly, no one year's set of dynamics can be used to characterize zooplankton production in the lake.  相似文献   

10.
The production of five genera of chironomids collected at 4- and 8-m depths at four stations in Lake Norman, North Carolina, was estimated using the size-frequency method. To correct for multivoltinism, the estimates were adjusted by multiplying by 365/Cohort Production Interval. Ranges of production estimates (P) in milligrams dry mass m-2 yr-1 and production/mean annual biomass ratios (P/B ratios) for each genus over both depths were: Tanytarsus, P = 744 to 8788, P/BB = 66 to 176; Cladotanytarsus, P = 74 to 2387, P/B = 69 to 100; Stempellina, P = 19 to 412, P/ B = 74 to 132; Chironomus, P = 166 to 7293, P/ B = 50 to 70; Cryptochironomus, P = 92 to 398, P/ B = 71 to 221. These estimates are among the highest reported for chironomids, due primarily to the rapid larval development times estimated for these genera.  相似文献   

11.
Daily and annual production rates of eight cladoceran and two rotifer species, and their seasonal variation and trophic role in the large, turbid, tropical Lake Tana, Ethiopia, were assessed in 2003–2005. Laboratory cultures were used to infer cladoceran development times, and secondary production was estimated using the growth increment summation and recruitment methods. Production for both taxa was highest in October–November, after the rainy season, and lowest in January–April during the dry season. Cladocerans and rotifers comprised 24% of the metazoan zooplankton biomass of 45.1 mg DW m?3, but comprised 53% of its production. Daily production for cladocerans and rotifers, respectively, was 1.23 and 0.94 mg DW m?3 d?1, and annual production was 447.9 and 353.5 mg DW m?3 y?1. Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, decomposed Microcystis provides their main food source during the pre- and post-rainy months in Lake Tana.  相似文献   

12.
D. lumholtzi in Lake Samsonvale, Queensland, Australia, is a small species (max. size approx. 7 µgC) that occurs in low abundance (max. abundance 6400 m–3), with an average daily biomass of 3.32 mgC m–3. Its annual rates of carbon assimilation, production and respiration, are 166, 110, and 56 mgC m–3 y–1 respectively. Annual biomass turnover (annual production/average daily biomass) is 33 and production efficiency is 50–66%. The population may consume 1.65–2.20 mgC m–3 daily, equivalent to about 1% of the average daily standing crop of phytoplankton. Clutch size is small, 2 eggs, but represents 30–80% of a female's weight. A female may only produce 8–10 offspring in a full lifespan, nevertheless egg production may account for 56% of total production. The population shows autumn and spring peaks in abundance, and is believed to oversummer (4 months) as ephippia.  相似文献   

13.
The production and metabolism of the amphipod Themisto japonica in Toyama Bay, southern Japan Sea, were estimated based on their biomass and population structure data collected from every 2-week samplings from 1 February 1990 through 30 January 1991 (363 days). Over the sampling period, the mean biomass (B) was 370 mg C m-2. Production (P) was calculated as the sum of somatic (Pg) and molt (Pe) production (P = Pg + Pc), and metabolism (M) as the sum of routine metabolism (Mrtn) and diel vertical migration (Mdvm). Integrating over the entire sampling period, Pg and Pe were 1934 and 176 mg C m-2, respectively, and Mrtn and Mdvm were 4100 and 1778 mg C m-2, respectively. Mean daily P/B and Pg/B ratios were 0.016 and 0.014, respectively, and mean Pg/M and P/M ratios were 0.33 and 0.36 respectively. Assuming assimilation efficiency of 0.904, ingestion was computed as 8837 mg C m-2 per 363 days. For the daily maintenance of growth and metabolism, the T.japonica population needs to ingest an amount of prey which equates to 6.6% of their biomass, or 30% of possible total production of their prey animals (copepods and small euphausiids) in Toyama Bay.   相似文献   

14.
Benthic bacterial biomass and production in the Hudson River estuary   总被引:2,自引:0,他引:2  
Bacterial biomass, production, and turnover were determined for two freshwater marsh sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl-3H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8–2.8 mg C·m–2·hour–1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl-3H]thymidine into DNA. Despite differences in dominant vegetation and tidal regime, bacterial biomass was similar (1×103±0.08 mg C·m–2) inTrapa, Typha, andNuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated withScirpus communities along the Hudson River (0.2×103±0.05 mg C·m–2 and 0.3±0.23 mg C·m–2·hour–1, respectively).  相似文献   

15.
We analyzed the long-term dynamics of aboveground biomass ofLeymus chinense steppe in relation to interannual variation of precipitation and temperature during 1980–1989 at levels of community, growth form and species in the Xilin river basin, Inner Mongolia Autonomous Region, China. Annual aboveground net primary production (ANPP) varied from 154.00 g m-2 yr-1 in 1980 to 318.59 g m-2 yr-1 in 1988, with a mean of 248.63 g m-2 yr-1 and the coefficient of variation of 25%. ANPP was not significantly correlated to annual precipitation and total precipitation during April–September atp0.05 level, but precipitation in May and August accounted for 69% of interannual variation of ANPP. The means of rain use efficiency and water use efficiency ofL. chinense steppe were 8.1 kg DM ha-1 mm-1 yr-1 and 0.89 mg DM g-1 H2O respectively. Aboveground biomass of various growth forms and species had different response patterns to interannual variation of precipitation and temperature. Monthly and seasonal distribution of precipitation and temperature were the key controls of aboveground biomass of species.  相似文献   

16.
Populations of A. aquaticus were sampled quantitatively in 1979–82 at two localities in the river Suså which has a slope of <1 m km−1 and large variations in macrophyte biomass, discharge and stream velocity. The latter two differed significantly between years. A. aquaticus had (1)−2 life cycles per year and summer and winter cohort production intervals of 85 and 290 days. Populations of A. aquaticus varied between 0 and 28,000 ind. m−2 with an exponential increase in the spring and an exponential decrease in the autumn-winter. The A. aquaticus rate of decrease varied between 0.62 and 5.61 % d−1 and increased with increasing rate of elimination of the macrophyte biomass Differences between the two localities were due to differences in physical heterogeneity. Production varied between 2.8 and 9.1 g DW m−2 yr−1 and between 12.9 and 55 g DW m−2 yr−1 at the two localities and P/B ratios were 7.4–9.9 yr−1. Physical limitations are thought to be most important for the populations of A. aquaticus in the Suså, and the macrophyte biomass played an important role in modifying the physical environment. Differences between streams and lake populations are discussed.  相似文献   

17.
Primary production of phytoplankton and secondary production of a daphnid and a chaoborid were studied in a small eutrophic pond. The gross primary production of phytoplankton was 290 gC m−2 per 9 months during April–December. Regression analysis showed that the gross primary production was related to the incident solar radiation and the chlorophylla concentration and not to either total phosphorus or total inorganic nitrogen concentration. The mean chlorophylla concentration (14.2 mg m−3), however, was about half the expected value upon phosphorus loading of this pond. The mean zooplankton biomass was 1.60 g dry weight m−2, of whichDaphnia rosea and cyclopoid copepods amounted to 0.69 g dry weight m−2 and 0.61 g dry weight m−2, respectively. The production ofD. rosea was high during May–July and October and the level for the whole 9 months was 22.6 g dry weight m−2.Chaoborus flavicans produced 10 complete and one incomplete cohorts per year. Two consecutive cohorts overlapped during the growing season. The maximum density, the mean biomass, and the production were 19,100 m−2, 0.81 g dry weight m−2, and 11.7 g dry weight m−2yr−1, respectively. As no fish was present in this pond, the emerging biomass amounted to 69% of larval production. The production ofC. flavicans larvae was high in comparison with zooplankton production during August–September, when the larvae possibly fed not only on zooplankton but also algae.  相似文献   

18.
Georg Wolfram 《Hydrobiologia》1996,318(1-3):103-115
From July 1990 to July 1991 the benthic community of the open water zone of Neusiedler See, one of the largest shallow lakes in central Europe, was studied with special reference to the chironomids. Only 16 spp. of chironomids inhabited the sediment of the open water zone. The numerically dominant species were Tanypus punctipennis, Procladius cf. choreus, Microchironomus tener and Cladotanytarsus gr. mancus. Most invertebrates showed a distinct horizontal distribution. Species richness and abundance were highest on muddy and organically rich substrates near the reed belt. Chironomid densities in this area reached 54,000 ind m–2 and biomass was 2.0 g dw m–2. The two tanypod species accounted for more than 90% of the standing stock of the macrozoobenthos near the reed belt. The sediment of the open lake and of the eastern part of Neusiedler See was composed of compact clay and sand as a result of the erosion of fine material due to strong waves and currents. Individual densities in these areas were much lower. Production of the numerically dominant species T. punctipennis was estimated using the increment-summation method, whereas production of the remaining species was estimated using an empirically derived multiple regression. Mean annual production of chironomids exceeded 6 g dw m–2 yr–1 near the reed belt, but it reached only 0.55 g dw m–2 yr–1 in the open lake. These values are rather low compared with other lakes and can be explained by unfavourable sediment conditions due to wave action and by physiological stress due to the water chemistry.  相似文献   

19.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

20.
Production by attached and free-living planktonic bacteria in two blackwater rivers in the Southeastern United States was measured over a period of 14 months by using the rate of incorporation of [methyl-3H]thymidine into DNA. Production rates and biomass dynamics were compared to determine the potential for in situ production to supply planktonic biomass. Bacterial production in these rivers was moderate and varied seasonally. Rates varied from 0.058 to 2.120 mg of C m−3 h−1 in the Ogeechee River and from 0.002 to 2.418 mg of C m−3 h−1 in Black Creek. Regressions of growth rate on various environmental variables showed that temperature and total dissolved organic carbon concentration were the best predictors of growth. Although attached bacteria were <21% of the total biomass, they accounted for up to 53% of the total production. Turnover times for attached bacteria ranged from <1 day to >3 years depending on season. Turnover times of free-living bacteria varied from 4.4 days to 11.8 years. Comparisons of biomass with production indicated that during most seasons, the majority of bacterial biomass in these rivers was of allochthonous origin. During summer, when water temperatures were high, bacterial growth in the river may have supplied a greater percentage of the standing stock of bacteria than allochthonous inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号