首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-DOPA production from tyrosinase immobilized on nylon 6,6   总被引:1,自引:0,他引:1  
The production of L-DOPA immobilized on chemically modified nylon 6,6 membranes was studied in a batch reactor. Tyrosinase was immobilized on nylon using glutaraldehyde as a crosslinking agent. The effects of membrane pore size and glutaraldehyde concentration upon enzyme uptake and L-DOPA production were investigated. Enzyme uptake was unaffected by glutaraldehyde concentration; approximately 70% uptake was observed when 25% w/v (group 1), 5% (group 2), and 3% (group 3) glutaraldehyde were used, indicating that glutaraldehyde was in excess. Similarly, uptake was the same for membranes with 0.20 and 10 mum pore sizes.Membranes produced using different levels of glutaraldehyde exhibited dramatically different capacities for L-DOPA production, despite the fact that enzyme uptake was equivalent. Membranes from groups 2 and 3 (5% and 3% glutaraldehyde) produced L-DOPA at a rate of 1.70 mg L(-1) h(-1) over 170 h in a 500-mL batch reactor. However, no free L-DOPA was detected when group 1 membranes were used. Experimental evidence suggests that L-DOPA was produced, but remained bound to these membranes via excess glutaraldehyde left over from the immobilization process. Membrane pore size also effected L-DOPA production; less production was observed when 10-mum membranes were used, despite equivalent enzyme uptake. The observed difference in production may be due to differences in the pore density on the two types of membranes which could affect the access of the substrate to the immobilized enzyme.The results of these studies indicate that tyrosinase can be effectively immobilized on nylon 6,6. L-DOPA production was optimal when 0.20-mum-pore-size membranes were activated with 3-5% glutaraldehyde. Stability studies indicated a 20% reduction in activity over 14 days when the immobilized enzyme was used under turnover conditions. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
In defined conditions, glutaraldehyde was shown to tightly bind cell membranes to flexible microtiter plates without significant alteration of the antigenic and functional properties of membrane proteins. In the presence of 0.06% glutaraldehyde, human thyroid membranes were bound to plastic firmly enough to resist numerous washing and flicking steps; the coated membranes remained almost unaltered with regard to monoclonal antibody and thyrotropin binding as well as adenylate cyclase and peroxidase activities. Based on the use of thyroid membrane-coated microtiter plates, a versatile solid-phase assay was developed which allowed screening of anti-membrane monoclonal antibodies, detection of thyrotropin-displacing activity in hormone and antibody preparations, and monitoring of fractionation experiments of solubilized membrane antigens and thyrotropin receptor. It was concluded that the use of glutaraldehyde for coating cell membranes to flexible microtiter plates enabled the establishment of simple, rapid, and reliable assays for detection and quantitation of membrane proteins and molecules interacting with membranes.  相似文献   

3.
Rat parathyroids fixed by microwave enhancement, i.e. microwave irradiation in the presence of glutaraldehyde for 8 s and postfixation with OsO4 after a delay of 5 min, were compared with parathyroids fixed by perfusion with glutaraldehyde followed by immersion in glutaraldehyde and finally in OsO4. Morphometric analysis revealed that microwave enhanced fixation led to a larger mean cell volume, to larger cell surface area, and to larger surface area in membranes of RER and secretory granules. Though it is not known by which method parathyroid cells are conserved closer to the living state it is obvious that microwave enhanced fixation retains more membranes but provokes centrifugal dislocation of membranes mimicking exocytosis.  相似文献   

4.
Summary Rat parathyroids fixed by microwave enhancement, i.e. microwave irradiation in the presence of glutaraldehyde for 8 s and postfixation with OsO4 after a delay of 5 min, were compared with parathyroids fixed by perfusion with glutaraldehyde followed by immersion in glutaraldehyde and finally in OsO4. Morphometric analysis revealed that microwave enhanced fixation led to larger mean cell volume, to larger cell surface area, and to larger suface area in membranes of RER and secretory granules. Though it is not known by which method parathyroid cells are conserved closer to the living state it is obvious that microwave enhanced fixation retains more membranes but provokes centrifugal dislocation of membranes mimiking exocytosis.  相似文献   

5.
The effect of glutaraldehyde (and Azure A) on temperature-sensitive high-affinity [3H]tryptamine binding was investigated in rat brain synaptic plasma membranes. In the 0.01-0.1% concentration range, the glutaraldehyde pretreatment preferentially inhibited only the above-mentioned portion of the binding, whereas the posttreatment of this reagent had no effect. On the other hand, in cases of pretreatment or posttreatment, a concentration of glutaraldehyde as high as 0.1% was inactive on the basal [3H]ligand binding capacity of the membranes (i.e., temperature-independent binding). Furthermore, it was revealed that the Scatchard plot of [3H]tryptamine binding in membranes pretreated with glutaraldehyde (0.05%) conformed to a straight line, as did a similar plot of temperature-independent binding. And, it was interesting to find that the binding parameters (KD and Bmax values) of both samples corresponded closely to each other. On the contrary, in all concentrations, Azure A affected nonspecifically both the temperature-dependent and the independent [3H]tryptamine binding to the same degree, regardless of whether or not there was pretreatment or posttreatment. All these observations clearly demonstrate that an appropriate concentration (0.01-0.1%) of glutaraldehyde pretreatment specifically blocks the temperature-induced allosteric modifications of high-affinity [3H]tryptamine binding sites.  相似文献   

6.
Macroporous cellulose and glass membranes were prepared from filter paper and glass fiber filter, respectively. To enhance their stability, the cellulose membranes were crosslinked with epichlorohydrin, and the glass membranes were crosslinked with glutaraldehyde or organic bifunctional silanes. Several pathways for the modification, activation, and ligand immobilization were used and compared. For cellulose membranes, the diazotization method provided the best results, whereas the glutaraldehyde method provided the best performance for glass membranes, regarding both their stability and ligand immobilization capacity. The characterization of the membranes was made by using a triazine dye, bovine serum albumin, and trypsin as test ligands. The membrane morphologies and the uniformities of ligand distribution across the membrane cartridges were investigated. Numerous affinity ligands were immobilized onto the membranes, and the prepared affinity membranes have been used to separate or purify concanavalin A, peroxidase, protease inhibitors, globulin, fibronectin, and other biomolecules.  相似文献   

7.
Photosystem I (PSI) and photosystem II (PSII) complexes have been isolated from stacked spinach thylakoid membranes that had been treated with varying amounts of glutaraldehyde. The concentrations of cytochrome f, Q, and P700 have been determined by spectrophotometric methods. It was found that at low concentrations of glutaraldehyde, the amount of cytochrome f associated with either PSII or PSI increased significantly while the amounts of Q and P700 stayed relatively constant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting analyses indicated the presence of cytochrome f and other components of the cytochrome b6-f complex in the PSII and PSI preparations after glutaraldehyde treatment, but no intermolecular cross-linked polypeptides could be detected. Solubilization of the cytochrome b6-f complex was also inhibited after thylakoid membranes were treated with low concentrations of glutaraldehyde. These results are discussed in relation to current models for the organization of the membrane complexes, and relate to the location of the cytochrome b6-f complex in appressed and nonappressed membrane regions of thylakoids.  相似文献   

8.
W. G. Langenberg 《Protoplasma》1978,94(1-2):167-173
Summary Brief fixation in a mixture of glutaraldehyde and OsO4 caused stacked chloroplast grana membranes in leaf cells of wheat, barley, tobacco, maize, cowpea, pigweed or bean plants to distend and vesiculate. Fixation with glutaraldehyde followed by OsO4 prevented this fixation artifact. In a fixative mixture, OsO4 apparently reacted with cell contents before glutaraldehyde.  相似文献   

9.
Potency of microwave irradiation during fixation for electron microscopy   总被引:1,自引:0,他引:1  
Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells. Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration. We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

10.
Horseradish peroxidase was conjugated to D-cytochrome b5 by three different two-step methods. The yield of conjugates based on the peroxidase enzymatic activity recovered after gel filtration was very low in the glutaraldehyde method, but higher in the N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and periodate methods. The molecular size of the conjugates was analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Monomeric conjugates were mostly formed via the glutaraldehyde and SPDP methods in the presence of appropriate molar ratios of proteins. Most of the conjugates formed via the periodate method were polymers. The conjugate preparations of the three methods could be incorporated into microsomal membranes. Conjugate polymers, however, appeared less able to be incorporated then monomers. There was a nonpreferential incorporation of free or conjugated D-cytochrome b5 contained in the conjugate preparation of the glutaraldehyde method. In conclusion, this study gives preference to the glutaraldehyde method for the preparation of conjugates that will subsequently be used as an in vivo marker of the D-cytochrome b5 incorporation into membranes.  相似文献   

11.
Treatment of rat cerebral cortical membranes with phospholipase A2 affects, in a parallel fashion, beta-, alpha 1- and alpha 2-adrenergic receptor binding, but not the affinity of these receptors for their respective ligands. Pretreatment of membranes with 0.1 percent glutaraldehyde blocks the effects of phospholipase A2 on adrenergic receptor binding. The results support the hypothesis that desensitization or "masking" of adrenergic receptors may involve changes in membrane lipid composition. Furthermore, glutaraldehyde may prove a useful tool in the investigation of the dynamic roles of lipids in receptor function and more specifically, their regulation and coupling to physiological events.  相似文献   

12.
Summary Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells.Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration.We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

13.
Summary The microvillous border of normal, developing and degenerating planarian retinal clubs was examined using osmium and glutaraldehyde fixation. Well-developed normal photoreceptors contained well preserved microvilli both after osmium and glutaraldehyde fixation. Osmium-fixed regenerating and degenerating retinal clubs showed serried vesicles and anastomosing tubules at the site of the microvillous border. After glutaraldehyde fixation, chains of vesicles were absent and the photoreceptor consisted of a regular array of microvilli. This difference indicates the selective sensitivity of the photoreceptor membranes in regenerating and degenerating retinal clubs to the action of osmium tetroxyde.  相似文献   

14.
Synopsis A densitometric method was utilized in the measurement of the relative thickness of the cellular membranes in the ventral lobe of the rat prostate. Potassium permanganate, glutaraldehyde, osmium tetroxide, and ruthenium tetroxide solutions were used as fixatives. During preparation for electron microscopy, the tissues were given standardized treatments to reduce methodological errors; latex particles were applied to the thin sections to serve as reference particles of a known size. The most remarkable observation of the study was that the densitometric method yielded reproducible results and that the different fixatives gave significantly different values for the relative thickness of cellular membranes. Glutaraldehyde, or glutaraldehyde followed by ruthenium tetroxide post-fixation, gave the highest values for membrane thickness while osmium tetroxide and potassium permanganate gave the lowest values. Glutaraldehyde treatment, prior to osmium tetroxide or potassium permanganate post-fixations, rendered the membranes thicker than after osmium tetroxide and potassium permanganate treatments alone. Ruthenium tetroxide appeared to be very suitable for fixation of cellular membranes.  相似文献   

15.
The cytocompatibility of polyurethane membranes was tested following ultraviolet or gamma irradiation as well as treatment with hydrogen peroxide or glutaraldehyde containing solutions. Despite the fact that all of the methods had been recommended for antimicrobial treatment of glucose biosensors, the treatments investigated significantly influenced cytocompatibility characteristics. Cytotoxicity of membrane eluates was not observed following irradiation treatments. This was also the case when the membranes were repeatedly washed following chemical treatment. Cell growth upon the membranes was stimulated to a different extent after gamma and UV irradiation as well as following hydrogen peroxide treatments. Residues of an urea-based hydrogen peroxide inclusion compound caused a restriction in cell growth upon the membranes as was similarly observed with 2 and 4% glutaraldehyde solutions acting over 2 and 4 h, respectively. It is concluded that cytocompatibility in vitro reflecting the host response against a biomaterial in vivo does not only depend upon the material itself but also upon antimicrobial treatments which could have consequences for its bioperformance characteristics.  相似文献   

16.
D Kuhn  P Wild 《Histochemistry》1992,97(1):5-11
Liver tissue of normal and glycogen depleted rats was prepared for transmission electron microscopy by perfusion fixation and subsequent osmication in the presence of various buffers, dehydration in aethanol and embedding in epon. The use of Na/K-phosphate or Na-cacodylate to buffer glutaraldehyde led to similar appearance and distribution of SER. When Na-cacodylate was used during osmication, more SER membranes were retained but less accumulations of glycogen were found than after osmication in the presence of Na/K-phosphate. Fixation with s-collidine buffered osmium led to an easily recognisable network of SER comprising wide tubules whereas glycogen was hindered to be stained. Veronal acetate or Na-cacodylate supplemented with sucrose resulted in marked dilation and disintegration of SER. A similar effect was obtained when Na/K-phosphate or Na-cacodylate was used in hyposmolar concentration as buffer for glutaraldehyde. Liver of fasted rats or glucagon-treated rats after perfusion with Na/K-phosphate buffered glutaraldehyde and osmication in the presence of Na/K-phosphate or Na-cacodylate comprised glycogen-depleted hepatocytes which contained abundant SER membranes occupying the entire space between other organelles even in samples harvested 3 h after glucagon administration. The diversity in appearance and distribution of SER and glycogen granules, which depends to a large extend on the buffer used, suggests that SER membranes may not be sufficiently stabilized during aldehyde fixation and osmication. We thus consider it likely that large accumulations of glycogen granules are the consequence of disintegration of SER membranes during processing rather than they represent the morphologic substrate of physiological degradation of SER membranes in the course of glycogen synthesis and deposition.  相似文献   

17.
M Locke  P Huie 《Tissue & cell》1977,9(2):347-371
Bismuth salts on aldehyde fixed tissue give a highly selective pattern of staining suitable for light and electron microscopy. Structures stained include the nucleolus, ribosomes, inter- and perichromatin granules, the Golgi complex beads and the outer face of the tubule doublets of mouse sperm, certain neurosecretory vesicles believed to contain biogenic amines, some junctions (some central synapses, neuromuscular junctions, tight junctions), specialized membranes such as the post acrosomal dense lamina of mouse sperm and the inner alveolar membrane of Paramecium, and a variety of structures associated with the cytoplasmic face of membranes, such as plasma membrane plaques, cleavage furrows, the leading edge of the spreading acrosome and sperm annuli.Staining is not reduced by nucleases and spot tests show no reaction between nucleic acids and bismuth under conditions similar to those used to stain tissues. However, spot tests do show strong binding of bismuth by basic proteins and by some phosphorylated molecules.It is hypothesized that bismuth reacts with cell components in two ways, distinguishable by their glutaraldehyde sensitivity. For example, staining of the nucleolus and ribosomes is blocked by glutaraldehyde but the inter- and perichromatin granules and the GC beads are unaffected. Spot tests show that basic proteins (histones, protamines, polylysine and polyargenine) and other molecules with free amino groups (5HT, tryptamine, dopamine) bind bismuth strongly, a reaction that is blocked to varying degrees by glutaraldehyde. We presume that most bismuth staining of tissues is due to reaction with amine groups and is glutaraldehyde sensitive and some may be due to guanidine groups which are less sensitive to fixation by glutaraldehyde. Organic phosphates may be the cause of the glutaraldehyde insensitive staining since ATP and some other phosphates bind bismuth in a reaction that is not blocked by glutaraldehyde.  相似文献   

18.
Summary Liver tissue of normal and glycogen depleted rats was prepared for transmission electron microscopy by perfusion fixation and subsequent osmication in the presence of various buffers, dehydration in aethanol and embedding in epon. The use of Na/K-phosphate or Nacacodylate to buffer glutaraldehyde led to similar appearance and distribution of SER. When Na-cacodylate was used during osmication, more SER membranes were retained but less accumulations of glycogen were found than after osmication in the presence of Na/K-phosphate. Fixation with s-collidine buffered osmium led to an easily recognisable network of SER comprising wide tubules whereas glycogen was hindered to be stained. Veronal acetate or Na-cacodylate supplemented with sucrose resulted in marked dilation and disintegration of SER. A similar effect was obtained when Na/K-phosphate or Na-cacodylate was used in hyposmolar concentration as buffer for glutaraldehyde. Liver of fasted rats or glucagon-treated rats after perfusion with Na/K-phosphate buffered glutaraldehyde and osmication in the presence of Na/K-phosphate or Na-cacodylate comprised glycogen-depleted hepatocytes which contained abundant SER membranes occupying the entire space between other organelles even in samples harvested 3 h after glucagon administration. The diversity in appearance and distribution of SER and glycogen granules, which depends to a large extend on the buffer used, suggests that SER membranes may not be sufficiently stabilized during aldehyde fixation and osmication. We thus consider it likely that large accumulations of glycogen granules are the consequence of disintegration of SER membranes during processing rather than they represent the morphologic substrate of physiological degradation of SER membranes in the course of glycogen synthesis and deposition.  相似文献   

19.
Collagen-alkaline phosphatase membranes have been prepared, and their enzymatic kinetics and in-vitro stability analyzed. Collagen-alkaline phosphatase dispersions were prepared by complexation in aqueous alkaline solution and cast into membranes by controlled dehydration. These membranes were then crosslinked in glutaraldehyde solution, washed thoroughly, and dried. Crosslinking in glutaraldehyde confers increased stability of catalytic activity to these collagen-enzyme membranes, especially when compared to uncrosslinked collagen-alkaline phosphatase membranes assayed in a similar fashion. Crosslinking in glutaraldehyde also appears to inhibit gross leaching of the soluble enzyme from the carrier matrix. Apparent intrinsic kinetic properties of the collagen-alkaline phosphatase conjugate were analyzed in membranes of various thickness in order to determine the effect of internal diffusion resistances on the kinetics of the immobilized enzyme. The apparent Michaelis constant of the immobilized enzyme decreased as a function of decreasing membrane thickness, reaching an observed apparent Michaelis constant of 1.6mM at a membrane thickness of 0.2 mm. Extrapolation of the apparent Michaelis constant to zero membrane thickness, using a linear plot of the natural logarithm of the apparent Michaelis constant versus membrane thickness, allowed estimation of the true Michaelis constant of the immobilized enzyme. The estimated value for the true Michaelis constant of the collagen-alkaline phosphatase complex was 0.7mM. This value agrees closely with reported values for several purified mammalian alkaline phosphatase. The apparent Michaelis constant for the 0.2mm collagen-enzyme membrane agrees closely with the Michaelis constant reported for an alkaline phosphate purified from chondrocyte matrix vesicles. The intrinsic maximum reaction velocity (V(m)) of the collagen-enzyme complex was estimated b plotting the observed reaction rate as a function of decreasing membrane thickness and extrapolating such plots, at various substrate concentrations, to the limiting case of zero membrane thickness. The maximum reaction velocity was obtained by the common intercept of these plots as they approached zero membrane thickness.  相似文献   

20.
Experiments were conducted on rats. A study was made of persistence of semipermeability of the membranes of the cell processes of the brain (contraction) with the action of a hypertonic buffer at various periods after death. The membranes of the processes proved to retain the property of semi-permeability even 48 hours after death. Prefixation of the postmortem material in the glutaraldehyde did not influence the sensitivity of the membranes of the processes to the osmotic strength of the surrounding solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号