首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human estrogen receptor forms multiple protein-DNA complexes   总被引:12,自引:0,他引:12  
A baculovirus expression system was used to overproduce the human estrogen receptor in insect cells. The estrogen receptor made in this system is full-length, binds estrogen specifically, and is recognized by a monoclonal antibody to the human estrogen receptor. The recombinant estrogen receptor binds the estrogen response element (ERE) in both the absence and presence of estrogen if the binding is carried out in the absence of Mg2+. In the presence of Mg2+, the estrogen receptor binds the ERE in a hormone-dependent fashion. This effect is more pronounced at higher temperatures. Tamoxifen, a nonsteroidal anti-estrogen, is able to stimulate ERE binding to the same extent and under the same conditions as estradiol. Estradiol stimulates formation of an estrogen receptor-ERE complex with an increased mobility in native gels as compared with the complex formed without hormone or with tamoxifen. These results demonstrate that specific DNA binding of the estrogen receptor is not absolutely dependent on the presence of hormone and that estradiol but not tamoxifen is able to induce a change in the estrogen receptor. This differential effect of estradiol and tamoxifen may be important in understanding the role of the receptor to activate target genes differentially.  相似文献   

3.
The nuclear localization of estrogen receptors has been examined under conditions which minimize redistribution and localization artifacts. A procedure is presented which rapidly lyses suspensions of cells from immature rat uteri by using 0.04% Triton X-100 in isotonic buffer. The ‘nuclei’ which are obtained after lysis have a median diameter of 1μm and are devoid of nuclear membranes. There is close agreement between the number of cells before lysis and the number of nuclear particles after lysis. Triton X-100 gave no interference with quantitative binding of estradiol to receptor and no alteration in the sedimentation behavior of receptor on sucrose gradients containing high or low salt. Using this procedure to monitor the dynamics of estrogen receptor distribution within uterine cells after exposure to estradiol, translocation of estrogen receptor to the nucleus was observed to occur at a rate slightly slower than the rate at which estradiol was specifically bound to free cells or receptors. The difference in these rates is compatible with a model in which estradiol must first bind to the receptor before the binding complex moves to the nucleus. The rate of nuclear translocation was temperature-dependent and was observed to occur at 0 °C, provided that enough time was allowed for steroid entry, receptor charging and transit to the nucleus. Two distinct phases were observed to characterize nuclear receptor localization. In the first phase after hormone exposure, estrogen receptor progressively accumulated in the nucleus; afterwards, estrogen receptor was progressively lost from the nucleus but could not be detected in other subcellular compartments in a form still binding hormone. Since high cell viability was maintained during these manipulations, loss of nuclear receptor was not due to cell damage during in vitro incubation. These studies suggest that this decline in nuclear receptor level after hormone interaction, which is known to occur in vivo, may be a normal event during estrogen interaction with target cells.  相似文献   

4.
5.
6.
Estrogens are steroid hormones with many systemic effects in addition to development and maintenance of the female reproductive system, and ligands of estrogen receptors are of clinical importance because of their use as oral contraceptive, hormone replacement and antitumoral therapy. In addition, tumoral tissues have been found to express aromatase and other steroidogenic enzymes synthesizing estradiol. To aid in the understanding of these processes, we have developed assays to image the local production of estrogens in isolated living mammalian cells. We constructed biosensors based on estrogen receptor α ligand binding domain and fluorescent proteins by following two approaches. First, the ligand binding domain and a short fragment of steroid receptor coactivator-1 were appended to a circularly permuted yellow fluorescent protein to construct an excitation ratio estrogen indicator. In the second strategy, we constructed emission ratio sensors based on fluorescence resonance energy transfer, containing the ligand binding domain flanked by donor and acceptor fluorescent proteins. Estrogens altered the fluorescence signal of cells transfected with the indicators in a dose-dependent manner. We imaged local estrogen production in adrenocortical H295 cells expressing aromatase and transfected with the fluorescent sensors. In addition, paracrine detection was observed in HeLa cells harboring the indicators and co-cultured with H295 cells. This imaging approach may allow detection of physiological levels of these hormones in suitable animal models.  相似文献   

7.
8.
A rat uterine cell culture was prepared as an experimental system for investigation of mechanisms of steroid hormone actions. Cells frequently supplemented with fresh medium were successfully cultured for 4 weeks through 2 successive passages. Studies of estrogen responsiveness in the primary culture as well as in it's first subculture were performed by a small scale uptake assay for determination of specific steroid binding. Scatchard analysis of specific ovarian hormone binding confirmed that cultured uterine cells preserve both estradiol and progesterone receptors. Characteristics of specific [3H]estradiol binding detected in cells of the first subculture were comparable to those obtained in the initial primary culture. The number of specific estradiol binding sites was diminished to one third of the initial values only in cells of the second subculture, 22 days after isolation of cells from tissue. In the primary culture and in it's first subculture the cells responded to estradiol with a 2-3-fold increase in progesterone receptor level. The subcellular distribution of steroid receptors was also studied; estradiol receptor complexes were detected predominantly in the nuclei whereas progesterone receptors were nearly equally distributed between nuclei and cytosol.  相似文献   

9.
Quantitative and qualitative changes in estrogen receptor follow addition of estradiol to estrogen responsive MCF-7 human breast cancer cells. We asked whether similar changes would accompany treatment of these cells with physiologically relevant concentrations of androgens. Androgen receptor sites were quantified by competitive protein binding assays on whole cells or extracts at various times following hormone addition. Both direct and exchange assays were employed. The androgen receptor in all of these experiments remained in a form which is completely exchangeable and approx 85% salt extractable. Quantity of receptor was unchanged (30,000 sites/cell, Kd 0.1 nM). Responsiveness to hormone treatment was demonstrated by antagonizing the estrogen dependent augmentation of cytoplasmic progesterone receptor in the MCF-7 cells with androgens. Thus, the androgen receptor was shown to be biologically active, but no time dependent quantitative or qualitative changes were observed during the first 6 h following androgen treatment.  相似文献   

10.
The retention pattern and biochemical characteristics of estrogen receptors in the nuclei of uterine cells were studied as a function of time after the in vivo injection of estradiol (E2) to immature female rats. One hour after the injection of 0.1 mug of tritiated E2, approximately 0.20 pmol per uterus of receptor bound hormone is retained in uterine nuclei. This dose of E2 produces a maximal uterotrophic response. Six hours after E2 administration, uterine nuclei retain 0.04-0.08 pmol of hormone per uterus. Hormone receptor complexes extracted from uterine nuclei 1, 3, and 6 h after in vivo injection of hormone have similar structural and binding characteristics. Receptors extracted at all three times sediment at 5S in high salt gradients and have a dissociation binding constant of approximately 3 nM for E2. The wash-out curves of receptors as a function of salt concentration are identical for uterine nuclei from animals treated for 1 or 6 h with estradiol, suggesting that the nature of the nuclear binding of receptors is not altered during this time interval. Experiments utilizing the injection of unlabeled estradiol, followed by an in vitro exchange procedure with tritiated estradiol, indicated that the total nuclear estrogen receptor sites, i.e., filled and vacant, decreased similarly.  相似文献   

11.
It is generally accepted that the Kd for hormone binding to estrogen receptors in extracts ranges between 0.1–1 nM and that binding displays positive cooperativity due to formation of homodimers. After carefully optimizing assay procedures, to diminish ligand depletion phenomena and to fully control recoveries, we find a single class of non-interacting high affinity hormone binding sites with a Kd of approx. 10 pM. Ligand depletion was avoided by decreasing receptor concentrations to 5–8 pM. We were therefore obliged to employ radioiodinated estradiol as a probe as the specific radioactivity of tritiated estradiol was too low to maintain the accuracy of the binding assay. Human estrogen receptor extracted from the MCF7 cell line and recombinantly produced (in yeast) wild-type human receptor have identical equilibrium hormone binding characteristics.  相似文献   

12.
Melatonin blocks the activation of estrogen receptor for DNA binding.   总被引:5,自引:0,他引:5  
The present study shows that melatonin prevents, within the first cell cycle, the estradiol-induced growth of synchronized MCF7 breast cancer cells. By using nuclear extracts of these cells, we first examined the binding of estradiol-estrogen receptor complexes to estrogen-responsive elements and found that the addition of estradiol to whole cells activates the binding of the estrogen receptor to DNA whereas melatonin blocks this interaction. By contrast, melatonin neither affects the binding of estradiol to its receptor nor the receptor nuclear localization. Moreover, we also show that addition of estradiol to nuclear extracts stimulates the binding of estrogen receptor to DNA, but this activation is also prevented by melatonin. The inhibitory effect caused by melatonin is saturable at nanomolar concentrations and does not appear to be mediated by RZR nuclear receptors. The effect is also specific, since indol derivatives do not cause significant inhibition. Furthermore, we provide evidence that melatonin does not interact with the estrogen receptor in the absence of estradiol. Together, these results demonstrate that melatonin interferes with the activation of estrogen receptor by estradiol. The effect of melatonin suggests the presence of a receptor that, upon melatonin addition, destabilizes the binding of the estradiol-estrogen receptor complex to the estrogen responsive element.  相似文献   

13.
In addition to the classical estrogen receptor, chick oviduct cytosol contains a sex steroid binding component (SSB) with specificity for steroidal estrogens, androgens and progestins. We have optimized the measurement of SSB and have further characterized this protein. It was possible to quantitate [3H]estradiol binding to SSB by performing the measurements in the presence of excess diethylstilbestrol, which saturates the estrogen receptor and does not bind to SSB, and by using excess progesterone to determine nonspecific binding. Since SSB appears to be quite unstable with rapid hormone dissociation kinetics, we determined that short incubation times (usually 2 h) at 0 degrees C with 20-30% glycerol in the buffer gave optimal SSB measurements. The affinity of SSB for estradiol (Kd = 20 nM) is about 5% that of the estrogen receptor. In addition to estradiol, several androgens and progestins bind to SSB. However, the nonsteroidal antiestrogen, H1285 does not bind to SSB even though it binds well to the avian estrogen receptor. The tissue content of SSB is about 15-fold greater than for estrogen receptor and is stimulated by estrogen treatment. Whereas labeled SSB cannot be readily resolved by ion-exchange chromatography due to rapid dissociation of hormone from SSB, post-labeling experiments yield binding activity eluting with 0.2 M KCl indicating that SSB is an acidic protein having a chromatography behavior similar to that of estrogen receptor. SSB binding was dramatically reduced by the chaotropic salt, NaSCN, whereas binding to the estrogen receptor was not disrupted. SSB is stabilized by sodium molybdate, a property which is characteristic of steroid receptors. Although the role of SSB in the chick oviduct is yet to be determined, an understanding of its properties is essential for accurate determinations of the estrogen receptor.  相似文献   

14.
1,10-Phenanthroline inhibited the DNA-cellulose binding of the transformed calf uterus estrogen receptor (homodimer of 66-kDa molecules: 5 S estrogen receptor) in a temperature- and concentration-dependent manner. This result appears related to the metal-chelating property of 1,10-phenanthroline, since the inhibition was decreased by addition of Zn2+ and Cd2+, but not by Ca2+, Ba2+, or Mg2+ for which the affinity of the chelator is low. Only a slight inhibition was observed in the presence of the 1,7-phenanthroline, a nonchelating analogue. After dialysis or filtration to remove free 1,10-phenanthroline, DNA binding of the 5 S estrogen receptor was still inhibited. Conversely, the chelator was unable to release prebound 5 S estrogen receptor from DNA-cellulose. The 5 S estrogen receptor DNA binding was inhibited when 1,10-phenanthroline was present during the transformation to activated receptor of the hetero-oligomeric nontransformed 9 S estrogen receptor, in which the hormone binding subunits are associated with heat shock protein, Mr 90,000 (hsp 90) molecules. In contrast, if 1,10-phenanthroline was removed before the transformation took place, only a slight inhibition was observed. Other experiments with EDTA indicated a similar inhibition of DNA-cellulose binding by the 5 S estradiol receptor, and all metal ions chelated by this agent prevented its inhibitory effect. The results indicate that 1,10-phenanthroline inhibited the DNA binding of the transformed 5 S estradiol receptor by chelating metal ion tightly bound to the receptor, which is not accessible to the chelator when the receptor is bound to DNA or to hsp 90. Therefore, they suggest that the metal ion may play a critical role in the interaction with DNA and hsp 90 by maintaining the structural integrity of the implicated receptor domain.  相似文献   

15.
Hormone binding controls the activity of estradiol receptor. The in vitro synthesized human receptor binds hormone with high affinity and low efficiency (1-4% of the maximal binding). We now report that phosphorylation on tyrosine of the synthetic receptor by an extensively purified calf uterus kinase increases hormone binding towards maximal levels without change in affinity. This is the first direct demonstration that a newly synthesized hormone receptor acquires ligand binding through phosphorylation. The use of in vitro synthesized proteins as substrates for enzymes which cause functional modifications of proteins is very promising because it is easy to identify the modified domains and residues by using deleted and point mutated proteins. Experiments with two estradiol receptor deletion mutants, one which lacks the N-terminal half of the receptor and binds hormone independently from the N-terminal half of the receptor, the other which lacks the C-terminal half of the receptor and contains the domain required to recognize the estradiol responsive elements, show that tyrosine phosphorylation occurs exclusively within or near the hormone binding domain of the receptor.  相似文献   

16.
17.
The site- or domain-specific immobilization of steroid receptor proteins with preserved structure and function would facilitate the identification and purification of receptor-associated regulatory components and nucleic acids. We have demonstrated previously that restricted surface regions of the estrogen receptor protein contain high affinity binding sites for immobilized Zn(II) ions. Possible conformational changes in receptor at the stationary phase immobilized metal ion interface were evaluated by monitoring alterations in the equilibrium dissociation constant (Kd) for [3H]estradiol. Soluble estrogen receptor proteins (unliganded) present in immature calf uterine cytosol were immobilized via surface-exposed Zn(II)-binding sites to beads of agarose derivatized with iminodiacetate (IDA)-Zn(II) ions. The IDA-Zn(II) bound receptor was incubated with increasing concentrations of [3H]estradiol (0.01-20 nM) in the presence and absence of unlabeled competitor (diethylstilbestrol) to determine the level of specific hormone binding. Steroid-binding experiments were performed in parallel with identical aliquots of soluble receptor. Analyses of the equilibrium binding data revealed the presence of a single class of high-affinity (Kd = 2.44 +/- 1.5 nM, n = 10) steroid-binding sites which were only marginally affected by receptor immobilization via surface-exposed Zn(II) bindings sites (Kd = 2.58 +/- 0.56 nM, n = 4). These data are consistent with the location of surface accessible Zn(II) binding site(s) on the receptor at or near the DNA binding domain which, upon occupancy, do not influence the steroid binding domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ligand-selective interdomain conformations of estrogen receptor-alpha   总被引:1,自引:0,他引:1  
Selective estrogen receptor modulators (SERMs) inhibit estrogen activation of the estrogen receptor (ER) in some tissues but activate ER in other tissues. These tissue-selective actions suggest that SERMs may be identified with tissue specificities that would improve the safety of breast cancer and hormone replacement therapies. The identification of an improved SERM would be aided by understanding the effects of each SERM on the structure and interactions of ER. To date, the inability to obtain structures of the full-length ER has limited our structural characterization of SERM action to their antiestrogenic effects on the isolated ER ligand binding domain. We studied the effects of estradiol and the clinically useful SERMs 4-hydroxytamoxifen and fulvestrant on the conformation of the full-length ERalpha dimer complex by comparing, in living human breast cancer cells, the amounts of energy transfer between fluorophores attached to different domains of ERalpha. Estradiol, 4-hydroxytamoxifen, and fulvestrant all promoted the rapid formation of ERalpha dimers with equivalent interaction kinetics. The amino- and carboxyl-terminal ERalpha domains both contain activation functions differentially affected by these ligands, but the positions of only the carboxyl termini differed upon binding with estradiol, 4-hydroxytamoxifen, or fulvestrant. The association of a specific ERalpha dimer conformation with the binding of ligands of different clinical effect will assist the identification of a SERM with optimal tissue-selective estrogenic and antiestrogenic activities. These studies also provide a roadmap for dissecting important structural and kinetic details for any protein complex from the quantitative analysis of energy transfer.  相似文献   

19.
An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.  相似文献   

20.
As part of our program to develop new probes for the estrogen receptor binding domain, we prepared and evaluated a novel 17α-(rhenium tricarbonyl bipyridyl) vinyl estradiol complex. Preparation of the final compound was achieved using the Stille coupling between the preformed brominated rhenium tricarbonyl bipyridine complex and the tributylstannyl vinyl estradiol. Competitive receptor binding assays and stimulatory assays demonstrated that the final complex retained affinity and efficacy comparable to the corresponding pyridyl vinyl estradiol analog, but lower than that of the phenyl vinyl estradiol analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号