首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Escherichia coli DNA polymerase IV (Pol IV, also known as DinB) is a Y-family DNA polymerase capable of catalyzing translesion DNA synthesis (TLS) on certain DNA lesions, and accumulating data suggest that Pol IV may play an important role in copying various kinds of spontaneous DNA damage including N2-dG adducts and alkylated bases. Pol IV has a unique ability to coexist with Pol III on the same β clamp and to positively dissociate Pol III from β clamp in a concentration-dependent manner. Reconstituting the entire process of TLS in vitro using E. coli replication machinery and Pol IV, we observed that a replication fork stalled at (−)-trans-anti-benzo[a]pyrene-N2-dG lesion on the leading strand was efficiently and quickly recovered via two sequential switches from Pol III to Pol IV and back to Pol III. Our results suggest that TLS by Pol IV smoothes the way for the replication fork with minimal interruption.  相似文献   

14.
15.
Wang Z  Binder M  Dai YC  Hibbett DS 《Mycologia》2004,96(5):1015-1029
Sparassis species show extensive morphological variation, especially when materials from eastern Asia and Australia are compared with collections from North America and Europe. We have been studying the taxonomy of Sparassis from eastern Asia, North America, Australia and Europe, using both morphological and molecular data. DNA was extracted from 32 recent collections of Sparassis from Australia, Canada, China, Finland, France, Germany, Japan, Switzerland, Thailand, the United Kingdom and the United States. The report of a Sparassis taxon from Australia is the first report of this genus from the Southern Hemisphere. Sequences of nuclear and mitochondrial rDNA and the gene encoding RNA polymerase subunit II (RPB2) were used to examine relationships both within the genus Sparassis and between Sparassis species and other members of the polyporoid clade. Equally weighted parsimony analyses and Bayesian analyses were performed using independent datasets and combined datasets of sequences from different regions. Our results suggest that: (i) Polyporoid fungi producing a brown rot may form a clade; (ii) as suggested in a previous study, Sparassis and Phaeolus form a monophyletic group, which is united by the production of a brown rot, the presence of a bipolar mating system and the frequent habit of growing as a root and butt rot on living trees; (iii) at least seven lineages are within Sparassis, represented by S. spathulata, S. brevipes, S. crispa, S. radicata and three taxa that have not been described, which can be distinguished on the basis of fruiting body structure, presence or absence of clamp connections, presence or absence of cystidia and spore size.  相似文献   

16.
17.
18.
Roles of RNA polymerase IV in gene silencing   总被引:2,自引:0,他引:2  
Eukaryotes typically have three multi-subunit enzymes that decode the nuclear genome into RNA: DNA-dependent RNA polymerases I, II and III (Pol I, II and III). Remarkably, higher plants have five multi-subunit nuclear RNA polymerases: the ubiquitous Pol I, II and III, which are essential for viability; plus two non-essential polymerases, Pol IVa and Pol IVb, which specialize in small RNA-mediated gene silencing pathways. There are numerous examples of phenomena that require Pol IVa and/or Pol IVb, including RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. Although biochemical details concerning Pol IV enzymatic activities are lacking, genetic evidence suggests several alternative models for how Pol IV might function.  相似文献   

19.
Several preparations of nuclear matrices containing varying amounts of DNA were obtained from mouse plasmocytoma P3-X63-Ag8.653 cells and tested for the presence of RNA polymerase II activity. It has been demonstrated that about 25% of RNA polymerase II activity detected in the original nuclei can be recovered in isolated nuclear matrices. Only DNA-bound RNA polymerase II was found in the isolated matrices, while both free and DNA-bound RNA polymerase II activities were detected in the original nuclei. RNA polymerase II activity found in the isolated matrices did not depend on the portion of DNA recovered in the nuclear matrices in a large interval between 91 and 1.5% of DNA content in the original nuclei. The conclusion has been drawn that initiated RNA polymerase II molecules are non-randomly distributed along DNA loops. They are concentrated near the points of DNA attachment to the nuclear skeleton.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号